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In the pursuit of WP4 of INDECIS, we have analysed the relationship between climate indices 
and sectorial data in different countries of Europe. In general, we have showed a very good 
correspondence between the variability of climate indices and key impact data with 
implications for different sectors: crop yields, groundwater, streamflow, landslides, mortality. 
This reinforces the use of the developed climate indices for the multisectorial monitoring and 
the assessment of impacts. Here we provide a summary of the obtained results: 

- Streamflow in Spain: We have used seven climatic drought indices to determine the 
influence of climatic drought to streamflow droughts in 226 undisturbed river basins in 
peninsular Spain covering the period 1962-2013. At the same time, we define spatial 
patterns in the response of streamflow to climatic drought. The study was conducted 
relating the climatic component represented by three multi-scalar drought indices -the 
Standardized Precipitation and Evapotranspiration Index (SPEI), the Standardized 
Precipitation Index (SPI), the Standardized Precipitation Drought Index (SPDI)-  and the 
self-calibrated version of four Palmer’s indices (PDSI, PHDI, Z-index and PMDI) with the 
hydrological-based Standardized Streamflow Index (SSI). Results demonstrated that 
multi-scalar drought indices outperform the Palmer drought indices (uni-scalars) 
thanks to their ability of determining climatic anomalies for different cumulative 
periods. Undisturbed river basins mainly responded at short time-scales of the 
different climate indices and the precipitation variability is the main driver of 
streamflow drought severity. Our results also showed that different non-climate 
factors have a great influence to explain the different times of response of hydrological 
drought to climate drought characteristics. 

- Vegetation activity in Spain: We used a high resolution (1.1 km) spatial dataset of the 
normalized difference vegetation index (NDVI) for the whole of Spain spanning the 
period from 1981 to 2015, combined with a dataset of the standardized precipitation 
evapotranspiration index (SPEI) to assess the sensitivity of vegetation types to drought 
across Spain. Specifically, this study explores the drought timescales at which 
vegetation activity shows its highest response to drought severity at different 
moments of the year. Results demonstrate that – over large areas of Spain –
vegetation activity is controlled largely by the interannual variability of drought. More 
than 90% of the land areas exhibited statistically significant positive correlations 
between the NDVI and the SPEI during dry summers (JJA). Nevertheless, there are 
some considerable spatio-temporal variations, which can be linked to differences in 
land cover and aridity conditions. In comparison to other climatic regions across Spain, 
results indicate that vegetation types located in arid regions showed the strongest 
response to drought. Importantly, this study stresses that the timescale at which 
drought is assessed is a dominant factor in understanding the different responses of 
vegetation activity to drought. 

- Crop yields in Spain and drought indices: In this study the impacts of drought on two 
representative rainfed crops in Spain (wheat and barley) were assessed. As the 
agriculture sector is vulnerable to climate, it is especially important to identify the 
most appropriate tools for monitoring the impact of the weather on crops, and 
particularly the impact of drought. Drought indices are the most effective tool for that 



purpose. Various drought indices have been used to assess the influence of drought on 
crop yields in Spain, including the Standardized Precipitation Evapotranspiration Index 
(SPEI), the Standardized Precipitation Index (SPI), the Palmer drought indices (Palmer 
Drought Severity Index, PDSI; Palmer Z Index, Z Index; Palmer Hydrological Drought 
Index, PHDI; Palmer Modified Drought Index, PMDI), and the Standardized Palmer 
Drought Index (SPDI). Two sets of crop yield data at different spatial scales and 
temporal periods were used in the analysis. The results showed that drought indices 
calculated at different timescales (SPI, SPEI) most closely correlated with crop yield. 
The results also suggested that different patterns of yield response to drought 
occurred depending on the region, period of the year, and the drought timescale. The 
differing responses across the country were related to season and the magnitude of 
various climate variables. 

- Crops in Spain and soil moisture: In this study, historical droughts are analyzed, not 
only through SPI and SPEI, but also using SSMI computed with soil moisture time series 
simulated with the VIC hydrological model. The main objective is to show the 
importance of considering soil moisture in the study of droughts. Drought occurrence 
was determined through the impacts of past droughts and not only through the deficit 
they produce at some point in the water balance process. We conclude that soil 
moisture is a key factor in the production of cereals and gross grain species but is not 
relevant for economic impacts. 

- Forests in Spain: In this study, we assess the response of forest growth and a satellite 
proxy of the net primary production (NPP) to drought in peninsular Spain and the 
Balearic Islands, a region characterized by complex climatological, topographical, and 
environmental characteristics. Herein, we employed three different indicators based 
on in situ measurements and satellite image-derived vegetation information (i.e., tree-
ring width, maximum annual greenness, and an indicator of NPP). We used seven 
different climate drought indices to assess drought impacts on the tree variables 
analyzed. The selected drought indices include four versions of the Palmer Drought 
Severity Index (PDSI, Palmer Hydrological Drought Index (PHDI), Z-index, and Palmer 
Modified Drought Index (PMDI)) and three multi-scalar indices (Standardized 
Precipitation Evapotranspiration Index (SPEI), Standardized Precipitation Index (SPI), 
and Standardized Precipitation Drought Index (SPDI)). Our results suggest that—
irrespective of drought index and tree species—tree-ring width shows a stronger 
response to interannual variability of drought, compared to the greenness and the 
NPP. In comparison to other drought indices (e.g., PDSI), and our results demonstrate 
that multi-scalar drought indices (e.g., SPI, SPEI) are more advantageous in monitoring 
drought impacts on tree-ring growth, maximum greenness, and NPP. This finding 
suggests that multi-scalar indices are more appropriate.

- Water sector in Calabria (Italy): among the 5 springs presented in the Deliverable 4.2, 
only the “Mezzafiumina” spring has been considered because it presents the longest 
registration period (1 January 2005 - 31 December 2018). The spring data were 
compared with the climatic data registered in the San Sosti station (code 1230), which 
is near this spring. The discharge data averaged in each month have been compared 



with the monthly data of some climatic indices, based only on rainfall or rainfall plus 
precipitation data. The comparisons of the climatic indices values with the discharge 
data do not seem to show particular correlations. The best matches between the two 
databases were obtained using the monthly rainfall, the UNEP monthly values and 
SPEI-3 monthly vales. Correlations seem to be clearer comparing the minimum values 
(on a 12-month timespan) of the average monthly discharge and SPI and SPEI values. 

- Forest fires in Calabria (Italy): in the ambit of the “disaster risk” sector, data about the 
burnt areas (monthly data of extension - in hectares - and the number of fires in the 
period 2008-2018) in each province (Cosenza, Catanzaro, Crotone, Vibo Valentia, and 
Reggio Calabria) of Calabria, provided by means of the module “Rapid Damage 
Assessment” (R.D.A.) of E.F.F.I.S. (European Forest Fire Information System) and 
included in the Deliverable 4.2, have been compared with the Keetch-Byram Drought 
Index (KBDI). The comparison results show that the peaks of the burnt areas/number 
of fires almost always correspond with the highest of the KDBI values, but not for all 
the provinces. A short delay between the peak occurrence of KDBI and the burnt 
areas/number of fires are present in all the comparisons. 

- Landslides in Calabria (Italy): the yearly data regarding the occurrences of landslides 
and floods (from 1990 to 2018), included in the Deliverable 4.2, for the whole territory 
of Calabria and for each province, have been compared with data of the following 
climatic indices: RT (RTA, RTM, RTS), R10mm, R20mm, R95TOT, R99TOT, R95%TOT, 
R99%TOT, RX1day, D50mm, LWP, DR1mm, DR3mm, DR10mm. The comparisons of 
both the number of landslides and floods with the climatic indices were made 
considering for each province both the average and the maximum values of the 
climatic indices calculated for each station belonging to the province. For the best 
matches, we tried to interpolate the two databases using a linear regression or an 
exponential curve. Regarding the landslides, the comparisons show clearer 
agreements with the following climatic indexes: RTA, R10mm, R20mm, R95TOT and 
D50mm. Regarding the flood events, the comparisons with the climatic indices are 
weaker than those obtained with landslides, because, given the characteristics of the 
rivers in Calabria, the occurrence of floods are mostly influenced by extreme hourly 
rainfall. Nevertheless, comparisons show the best matches with the following climatic 
indexes: R95TOT, D50mm,  R99F. 

- Groundwater monitoring data at the scale of France: This report presents an attempt 
to use Artificial Intelligence methods to explore the dependence of the groundwater 
levels (GWL) to the effective precipitation at the scale of France. A methodological 
framework has been designed to assess two main parameters of feature engineering: 
the cumulating depth for effective precipitation rolling sum and the delay between it 
and GWL time series. Based on a preselected set of 254 piezometers considered to be 
poorly influenced by pumping, the correlation between effective precipitation (and 
derived time series) and groundwater level has been explored. Results show that both 
signals can be rather well correlated (values above 0.6) depending on the way the 
effective precipitation is cumulated or delayed in time. Even if the goodness of the 
correlation does not appear to be dependent on one particular parameter, it is now 



possible to consider simulating GWL for all piezometers presenting good correlation 
coefficient values using the effective precipitation grid computed based on E-OBS & 
INDECIS data at the French scale.   

- Simulating and forecasting groundwater levels in the MétéEAU Nappes website: The 
MétéEAU Nappes website offers a large range of services for the monitoring of the 
current and the future state of French aquifers. This report presents the MétéEAU 
Nappes tool and how it has been updated in order to use the INDECIS meteorological 
data for the modelling and forecasting of the groundwater levels time series for some 
piezometers. The meteorological ECAD point-scale or E-OBS gridded data from the 
INDECIS project have been used as forcing data to include in the MétéEAU Nappes 
website, the modelling and seasonal forecasting of groundwater level case studies 
selected at the European scale. The work performed allow the localisation of the 
piezometer, the visualisation of the piezometric data time series and the modelling 
and seasonal forecast of the groundwater levels. Statistical analysis allowed identifying 
correlations between some of the indices calculated in INDECIS and defining 
groundwater level thresholds for both dry and wet situations. The public access 
version of MétéEAU Nappes website will be released in the beginning of 2021, 
including an Application Programming Interface (API) that will allow interested users to 
access the interface independently of its implementation. 

- Human mortality in Spain: This study assessed the spatial and seasonal distributions of 
mortality rates in mainland Spain and their links to climatic conditions over the period 
1979-2016. The analysis was made on a seasonal basis using 79 indices and natural 
deaths data. Results indicate large spatial variability of natural deaths, which was 
linked mostly to changes in the percentage of elderly population across the study 
domain. Spatially,  both the highest mortality rates and the largest percentage of 
elders were distributed in the northwest areas of the study domain. A strong 
seasonality effect was observed, with the main increasing trend found during 
wintertime. Also, results suggest strong dependency between climatic indices and 
natural deaths, albeit with high spatial and season variability. 

The following pages provide a detailed assessment of the assessment of climate indices for 
different applications in different sectors and regions. As some of the studies have been 
published in open access journals the formatted publication is included. 



Response of streamflow to drought indices in Spain 



11.. Introduction 

Among natural extreme hazards, drought entails one of the most difficult to define and 
characterize due to the complexity of defining the onset and not only the climatic, but also the 
anthropogenic factors involved in the development of an event (Lloyd-Hughes, 2014; Van Loon 
et al., 2016; Wilhite and Glantz, 1985). The main cause (but not the unique) of drought is the 
anomalous reduction of precipitations over a certain period of time, triggering what is known as 
meteorological drought. Climate anomalies such as precipitation shortages and/or increased 
atmospheric evaporative demand may propagate to the hydrological cycle by means of soil 
moisture deficits, streamflow, lake levels, reservoir storages etc., producing a hydrological 
drought (Barker et al., 2016; Tallaksen and Van Lanen, 2004; Van Loon, 2015; Van Loon and 
Laaha, 2015).  

There are several knowledge gaps on the whole interaction between meteorological droughts 
and their propagation throughout the entire hydrological system, including streamflow 
(Haslinger et al., 2014) and groundwater (Lorenzo-Lacruz et al., 2017; Marchant and Bloomfield, 
2018). This inherent complexity contribute to the uncertainty of pinpointing the beginning of 
the event, identifying the trigger mechanisms and constraining factors – naturals or not –  and 
quantifying the impacts caused on water resources (generally linked to socio-economic 
activities) and the environmental damages associated to a drop in flow regime (e.g. increase of 
water temperature, changes in aquatic ecosystems, etc.)(Mosley, 2015). 

Besides, the different response times of the hydrological system to precipitation deficits vary 
significantly. Previous studies have shown that the nature of hydrological variables determine 
different temporalities, for example, lowering in water retained by soils shows up faster than 
groundwater levels or reservoir storages rates (Barker et al., 2016; Bloomfield et al., 2015; 
Lorenzo-Lacruz et al., 2010; Peters et al., 2005; Scaini et al., 2015). Catchment physiographical 
properties also determine different temporal patterns. In a recent study, Peña-Gallardo et al. 
(2019) analyzed the hydrological response to drought in relatively undisturbed river basins 
across the U.S. emphasizing the importance of environmental and physical characteristics to 
explain different modes in the response of hydrological to meteorological droughts. For their 
part, Van Loon and Laaha, (2015) demonstrated that catchment properties related to climate 
control are the main explaining factors on streamflow drought duration in Austria. Similarly, 
many studies (Batalla et al., 2004; López-Moreno et al., 2009; Tijdeman et al., 2018; Vicente-
Serrano et al., 2017) have focus the attention on how the human influence, mainly reflected on 
water regulation, management and demand, but also land-use/land-cover conditions, biases the 
hydrological response to meteorological droughts, sometimes mitigating or intensifying the 
intensity, frequency or duration of these events (Liu et al., 2019; López-Moreno et al., 2009; 
Vicente-Serrano et al., 2017). 

Given the importance of the effects of hydrological droughts, proper management strategies as 
mitigation plans and early warning systems are necessary in order to assess adequately and 
effectively drought severity (Huang et al., 2017).  There are multiple methods for characterizing 
the effects of drought (e.g. remote sensing derived information (Ayehu et al., 2019)) but since 
last century, scientific community have made an effort developing multiple drought indices, 
commonly used nowadays for operative monitoring purposes. Reviews as the conducted by 



Mishra and Singh, (2010) or more recently Mukherjee et al. (2018) provide a comprehensive 
evaluation of the very diverse drought indices designed to quantitatively analyse drought 
characteristics (duration, severity and intensity). Particular consideration should be given to 
Palmer (1965) who proposed for the very first time a drought index, the Palmer Drought 
Severity Index (PDSI) that allows identifying independent drought periods and objectively 
determining their severity. For their part, Mckee et al. (1993) introduced the time-scale concept 
with the Standardized Precipitation Index (SPI), recognized by the World Meteorological 
Organization as the reference drought index (Hayes et al., 2011; WMO, 2012). This novel 
concept let identifying drought events in any natural system and region under very diverse 
climatic conditions at different time scales (Vicente-Serrano et al., 2012), in particular the 
hydrological system response time to climate conditions, which is well known that fluctuate in 
time and among regions (Barker et al., 2016; López-Moreno et al., 2013; Tetzlaff et al., 2008). 

Many studies have assessed the relationship between climatological and hydrological drought 
and the propagation through different parts of the hydrological system by performing 
meteorological drought indices and relating them with streamflow discharged data. For 
example, Lorenzo-Lacruz et al. (2010) evaluated the impact of climatic droughts in a highly 
regulated basin in the Tagus river (Spain), finding significant correlations between two multi-
scalar drought indices and river discharges. Barker et al. (2016) studied the propagation of 
drought in the 121 near-natural UK catchment identifying significant temporal and spatial 
differences in the relationship between the SPI and standardized streamflow. For their part, 
Loukas and Vasiliades, (2004) reported significant and strong correlations between the 2 to-4-
month SPI and surface runoff in Greece, whereas soil moisture responded better at 1 to-3-
month SPI. Similar results were noticed in the river flows of ten regions in China by Zhai et al. 
(2010). 

The stated drought indices are generally climate-based (precipitation and the AED are the main 
input variables). Wittingly the non-linear processes associated to climate and natural systems 
interactions, it is often discussed the appropriateness or not, of applying a single climate-based 
drought index to characterize a particular drought event (e.g. using a meteorological index to 
analyse a hydrological drought) (Van Lanen et al., 2013). Integrated systems specifically 
designed for a risk management also wander incorporating meteorological variables to assess 
other types of drought (Bachmair et al., 2016) (e.g. European Drought Observatory (EDO), 
http://edo.jrc.ec.europa.eu or the South Asia Drought Monitoring System, http://dms.iwmi.org
).  

Mediterranean region is characterized by a high seasonal and interannual variability of 
precipitation, being recurrent the long and severe drought events. Climatic characteristics cause 
that water resources are very limited in Mediterranean river basins. It is therefore necessary the 
identification of appropriate management tools able to quantify the impact of climatic drought 
on streamflow.  

Previous studies have characterized the connections of drought through the hydrological cycle 
in Spain (e.g. López-Moreno et al. (2013); Lorenzo-Lacruz et al. (2013), (2017), Vicente-Serrano 
et al.,(2015), (2017)), however there are no previous studies evaluating the performance of 

http://dms.iwmi.org/
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different climatic drought indices. Moreover, the existing studies focused on a large diversity of 
basins, several of them affected by large human influences, making impossible to isolate the 
possible differences in the response of hydrologic to climatic droughts. For these reasons, in this 
study we analyzed the spatio-temporal response of a hydrological drought index in 226 
headwaters basin (avoiding the anthropogenic signal), to climatic drought. To achieve this goal, 
we provide a performance review for seven of the most well-known multi-scalar (the 
Standardized Precipitation Index –SPI- , the Standardized Precipitation and Evapotranspiration 
Index –SPEI-, the Standardized Palmer Drought Index – SPDI-) and uni-scalar (the Palmer 
Drought Severity Index –PDSI-, the Palmer Drought Hydrological Index –PHDI-, the Palmer 
Moisture Anomaly Index –Z-Index-, the Palmer Modified Drought Index – PMDI -) drought 
indices in Peninsular Spain in the period 1962-2013. At the same time, we analysed temporal 
and spatial patterns of streamflow response to climatic droughts in these basins.  

22.. Data and methods 
22..11.. Datasets 

2.1.1. Climatic data 

Meteorological information (precipitation, maximum and minimum temperature) was obtained 
from a gridded dataset at 1.1 km resolution available for peninsular Spain and the Balearic 
Islands at weekly scale for the period 1962-2013. This dataset comprises a larger number of 
meteorological variables such as relative humidity, wind speed and sunshine duration. The 
Spanish National Meteorological Agency (AEMET) provided original data. An exhaustive quality 
control and homogenization of data were conducted before gridding process. More detailed 
description about the complete procedure of the dataset construction can be found in Vicente-
Serrano et al. (2017). The AED was inferred using the available information and following the 
Penman-Monteith’s parametrization recommended by FAO (Allen et al., 1998). Weekly data 
was transformed to monthly for the different analysis. The water holding capacity information 
was obtained from the European LUCAS based topsoil data (Ballabio et al., 2016). 

2.1.2. Streamflow data 

Most of the streamflow series used in this study were provided by the Ministry of Agriculture’s 
CEDEX (http://ceh-flumen64.cedex.es/general/default.htm), while the stations located within 
the autonomous communities of Andalusia (https://www.agenciamedioambienteyagua.es/)  , 
Basque Country (http://www.uragentzia.euskadi.eus/u81-0002/es/)  and Catalonia 
(http://aca.gencat.cat/ca/inici) were obtained from the corresponding autonomic agencies 
websites. A network of 1204 gaugin stations in peninsular Spain were collected, however the 
selection was restricted to those stations with less than the 25% of missing data for the 
analysed period. In order to work with no missing values in the series, we developed a 
reconstruction and gap filling procedure based on nearby neighbour and using the whole 
available stations. Series from 472 gaugin stations widespread distributed were filled. Further 
details about the followed methodology and the statistical validation of the reconstructed series 
are outlined in Vicente-Serrano et al. (2019, submitted). From the final series, we selected a 
total of 226 stations located in the headwater of major basins, excluding those affected by 
reservoirs or any other known human regulation activity that may affected the natural signal of 
streamflow. Figure 1 illustrates the spatial distribution of the selected gauging stations. 

http://aca.gencat.cat/ca/inici
http://www.uragentzia.euskadi.eus/u81-0002/es/
https://www.agenciamedioambienteyagua.es/
http://ceh-flumen64.cedex.es/general/default.htm


2.1.3. Physiographical and land cover information 

A digital elevation model (DEM) at 400 m resolution for the entire Iberian Peninsula was 
obtained from the National Center for Geographic Information (CNIG) 
(http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=LIDAR).  This DEM 
served to create drainage and direct flood grids that served to delimitate the drainage basins 
boundaries associated to each gaugin station. For this purpose we used ArcGis watershed tool 
and the gauging stations were used as the pour points. The resulting drainage basins were used 
as masks to extract the average climatic and physiographical characteristicis in each basin. 

The National Geological Map provided by the Spanish Geological Survey (IGME) 
(http://info.igme.es/cartografiadigital/geologica/Magna50.aspx?language=en)  was employed to 
classify the lithological units of Spain. The three major soil classes considered are: chalky, clay 
and siliceous soils. The land cover map (1980 - 1990) developed by the Spanish Ministry of 
Agriculture (https://www.mapa.gob.es/es/cartografia-y-
sig/publicaciones/agricultura/mac_1980_1990.aspx), originally at the spatial scale of 1:50,000 
and later rasterized at 1.1 km resolution was used to a better knowledge of the land classes 
present in each basins.   

22..22.. Methodology 
2.2.1. Hydrological drought identification 

Standardized Streamflow Index (SSI) 

Streamflow magnitude and seasonality change considerably depending on the river regime and 
time, making difficult to compare time series from different regions. To solve this matter, 
streamflow series are usually standardized letting the comparison among stations not just in 
space but also in time. Despite streamflow data do not adjust to a unique statistical distribution 
function, many of the standardized indices in the literature lack of the flexibility to find the most 
suitable distribution in each time series (Lorenzo-Lacruz et al., 2013). Here, for standardizing 
the monthly streamflow series we used the Standardized Streamflow Index (SSI) following the 
methodology described in Vicente-Serrano et al. (2012). Thus, probabilities are obtained by 
fitting one of the multiple candidate probability functions (e.g. the General Extreme Value, the 
Pearson type III, the log-logistic, the log-normal, the generalized Pareto or the Weibull 
distributions). Depending on the robustness found in the adjustment between the L-moments 
of the sampled station and the L-moments of the specific selected distribution, one or another 
distribution is fitted. Probabilities are ultimately transformed to z-scores using Abramowitz and 
Stegun (1970) approximation. 

2.2.2. Climatic drought indices  

Palmer Drought Severity Indices (PDSIs) 

The Palmer Drought Severity Index (PDSI) was enunciated by Palmer, (1965), it is a worldwide 
known meteorological drought index used for estimating relative dryness. Originally, the PDSI is 
based on the amount of moisture departure, defined as the ‘Climatically Appropriate for 

https://www.mapa.gob.es/es/cartografia-y-sig/publicaciones/agricultura/mac_1980_1990.aspx
https://www.mapa.gob.es/es/cartografia-y-sig/publicaciones/agricultura/mac_1980_1990.aspx
http://info.igme.es/cartografiadigital/geologica/Magna50.aspx?language=en
http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=LIDAR


Existing Conditions’ (CAFEC), within a two-layered soil moisture simulation for a specific region. 
Variations of this index include the Palmer hydrological drought index (PHDI), the Palmer 
moisture anomaly index (Z-index), and the Palmer modified drought index (PMDI). Even though 
these indices are broadly applied for monitoring purposes and quantification of droughts, they 
have important limitations to monitor drought conditions (Vicente-Serrano et al., 2011), lacking 
of multi-scalar features, having a complicated formulation and not being comparable among 
regions (Alley, 1984; Doesken and Garen, 1991; Guttman, 1998). In this study we used the 
modified version of PDSIs, the self-calibrated, introduced by Wells et al. (2004), which allows 
better spatial comparability.   

Standardized Precipitation Index (SPI) 

Introduced by Mckee et al. (1993), the Standardized Precipitation Index (SPI) provides the 
possibility of identifying either wet and dry conditions at different time scales. This index is 
worldwide recognized for been a useful tool for monitoring and early warning purposes (WMO, 
2012). Among its strengths, it is worth mentioning the less number of variables required in the 
calculation in comparison to other drought indices. The SPI transforms the sum of monthly 
precipitation into a probability function fitting a gamma distribution and probability is 
transformed to standardized units (with mean equal to 0 and variance equal to 1), enabling 
spatial comparison across regions with different climates characteristics.   

Standardized Precipitation Evapotranspiration Index (SPEI) 

Vicente-Serrano et al. (2010) developed the Standardized Precipitation Evapotranspiration 
extending the conceptualization of the SPI considering the AED as another relevant factor that 
affects drought severity. Previous studies have acknowledged the repercussion of warming on 
crop productions (Asseng et al., 2014), forests decay (Camarero et al., 2015) and streamflow 
(Vicente-Serrano et al., 2014) around the world, highlighting the importance of using drought 
indices that include temperature as principal variable. The SPEI first computes monthly climate 
balances (Di) using monthly precipitation and reference evapotranspiration values. Monthly Di

are later aggregated at different time scales and transformed to normal standardized units 
using a 3-parameter log-logistic distribution. 

Standardized Precipitation Drought Index (SPDI) 

The standardized precipitation drought index (SPDI) presented by Ma et al. (2014), combines 
PDSI and SPEI schemes. The SPDI accumulates at various time scales internal water balance 
anomalies calculated in the PDSI scheme, which are transformed into standardized units fitting 
a standard normal distribution.  

Hereafter, we used the terminology multi-scalar to designate those indices that can be 
calculated at different time scales - SPEI, SPI, and SPDI – and uni-scalar to the PDSIs.  

2.2.3. Statistical analysis 

Considering the whole series of streamflow, that is not differentiating between high and low 
flows periods, we first examined the link between the SSI and the different climatic drought 
indices and determined which index or indices resulted the most suitable for monitoring 
streamflow drought conditions. This relationship between the climatic drought indices -



summary of the climatic conditions-, and the standardized streamflow represented by the SSI 
was conducted calculating Pearson’s correlation coefficients. As multi-scalar drought indices 
were calculated at scales from 1- to 48-months, a total of 576 series (12 months x 48 time-
scales) of correlations were obtained for each basins in the case of SSI and multi-scalar indices 
and 12 series for the SSI and uni-scalar indices.  

The time-scale (in the case of multi-scalar indices) at which the strongest correlation occurs 
between climatic drought indices and SSI is a priori unknown. For this reason, we calculated the 
correlations at time-scales between 1- and 48-months and for the different monthly series, 
retaining the maximum r value in each basin independently on the time-scale or month in which 
it is recorded (only significant correlations p < 0.05 were account). A t-test was conducted to 
investigate possible significant differences or similarities in the correlation coefficients obtained 
between the SSI and the different climatic drought indices. Once the index with best response 
to streamflow was determined, we aimed to explain the relationship between the maximum 
correlations and the climatological characteristics in order to find similarities, or not, in the 
response to drought of the selected basins with different averaged climatic conditions. At the 
same time, we extracted the percentage of surface in each basin corresponding to the three 
basic lithological categories (clay, chalk and siliceous soils) and vegetation cover (irrigated and 
rain-fed croplands, meadows and shrubs, conifers and deciduous forests). 

33.. Results 
33..11.. Relationship between climatic drought indices and the standardized 

streamflow index 

The magnitude of the Pearson’s correlation coefficients between the seven climate drought 
indices and the SSI revealed, in general, that strong and significant relationship exist among the 
SSI and the climate drought indices in the majority of basins (Figure 2). However, substantial 
differences were glimpsed between indices. Independently on the month of the year and the 
drought time-scale, higher correlation coefficients were found considering the different multi-
scalar indices (SPI, SPEI and SPDI), with average correlation higher than 0.8 in all of the cases, 
while correlations tended to be lower with the Palmer indices. The PHDI resulted the drought 
index with the weakest relation with SSI (r = 0.52). The PDSI and the PMDI showed higher 
median correlation values (r = 0.57 and r = 0.58 respectively) and almost all the basins recorded 
significant correlations. Among the Palmer indices, the Z-index showed the strongest correlation 
with the standardized streamflow, this index was among PDSIs the one that performed very 
similar to the multi-scalar. The median correlation value was high (r = 0.78) but also presented 
higher dispersion between basins and recorded non-significant correlations. On the other hand, 
the SPEI, the SPI and the SPDI reached the highest median correlations (SPEI r = 0.86, SPI r = 
0.85, SPDI r = 0.86) with little differences among them. Multi-scalar drought indices tended to 
perform better than the PDSIs, being able to monitor streamflow droughts more effectively. 

The spatial distribution of the maximum correlations between the SSI and the different climate 
indices is illustrated in Figure 3. In the case of the PDSI, the PHDI and the PMDI low to medium 
correlations values (r = 0.4 - 0.6) were found in almost all the territory. The PHDI showed high 
correlations (r ≥ 0.8) in the headwater basins located in the Segura, Guadiana and Ebro major 
basins, these values were recorded by the PDSI and the PMDI in the same basins and a few 



others located in the Guadalquivir, Tajo, Duero, Minho and Jucar major basins. The pattern 
showed by the Z-index varied significantly respecting the other PDSIs. Medium to high (r = 0.5 –
0.8) correlations predominated in almost all the basins. Exceptionally, low correlations were 
registered in the basins of the Segura river, as well as in southwestern regions of Ebro river 
basin and few basins located in northern Spain. High correlations between the multi-scalar 
drought indices and the SSI with the strongest correlations coefficients (average r ≥ 0.8) were 
found equally distributed in the territory. On the contrary, lower correlations (average r = 0.5 –
0.6) were observed, once again, in the basins of the Segura river and northern of the internal 
basins of Catalonia.  

The monthly correlations between the SSI and the seven drought indices are showed in the 
Figure 4. In general, higher correlations were observed from February to May, especially in the 
multi-scalar indices (average r ≥ 0.8) and the Z-index (average r > 0.6), but they are also in 
general high from May to September. The magnitude of the correlations considering the PDSI, 
the PHDI and the PMDI tended to be low and under significance level in February and March, 
while the months with lower correlations for the multi-scalar indices and the Z-index were 
November and December with average correlations below 0.6 and 0.4 respectively. The three 
multi-scalar drought indices showed little differences in the magnitude of their correlations.  

Figure 5 shows the similar magnitudes in the maximum correlations found between the multi-
scalar drought indices and the standardized streamflow. Little differences have been observed 
between the SPEI, the SPI and the SPDI, the level of agreement between pairs of indices is quite 
notable: the SPEI/SPDI or the SPEI/SPI were r = 0.98, while the SPDI/SPI was r = 0.97. Comparing 
the magnitudes of these multi-scalar drought indices with the Z-index, we noticed that the 
agreement was weaker. 

Among the analysed climatic drought indices correlated with the SSI, the multi-scalar drought 
indices were those that recorded the maximum number of basins where highest correlations 
were found (Figure 6). Some of the basins, mainly located in the eastern of major river basins, 
showed stronger agreement with one of the PDSIs, but that percentage ranked for the 12.24% 
of basins, being the Z-index the most representative (8.30%) and the PDMI the last (0.44%). The 
SPDI pointed out as the index in which the greatest percentage of basins found the best 
agreement (41.92%) followed by the SPEI (25.33%) and the SPI (20.52%). Nevertheless, there 
are not significant differences among the different multi-scalar indices. The results of the t-test 
performed with the complete correlation matrices (i.e. considering the 48 time steps and 
months of the year) showed that in less than the 15% of the basins there were significant 
differences between the correlations recorded between the SPEI and the SPDI, and less than 
the 30% between the SPEI/SPI and the SPDI/SPI. Next section uses the results based on the SPDI 
that shows in general a bit higher correlations.  

33..22.. Seasonal response of the SSI to the different climatic drought indices 

Figure 7 displays the spatial distribution of the monthly maximum correlations recorded 
between the SPDI and the SSI irrespective on the time-scale. In general, high correlations were 
recorded in most of stations but during summer months, the weakest correlations were 

http://www.eas.slu.edu/GGP/BIM_Recent_Issues/bim137-2002/harnisch_harnisch_seasonal_hydrology_Wettzellr_bim137_02.pdf
http://www.eas.slu.edu/GGP/BIM_Recent_Issues/bim137-2002/harnisch_harnisch_seasonal_hydrology_Wettzellr_bim137_02.pdf


observed. Similar spatial patterns and magnitude of correlations were found with the SPI and 
the SPEI results.  

Table 1 summarized the percentage of basins with the highest correlations between the three 
climate drought indices and the SSI as a function of the drought time scale at which this 
correlation is found. More than the 62% of basins presented strongest correlations at short 
time-scales (1 to-3 months). The 11% of basins correlated more at 1-month, the 14.83% did it at 
3-month while more than the 37% found the best agreement with climatic conditions at the 2-
month scale. 

Maximum monthly correlations between the SPDI and the SSI tended to correspond to short 
time-scales (1 to-3 months) in more than the 80% of the analysed basins (Figure 8). This 
percentage varied depending on the observed month. For example, in June approximately the 
35% of the basins found the highest correlations at medium to longer time-scales (ranging 
between 7 and >25 months). It is noteworthy that the majority of the basins, mainly located in 
Iberian (northeast) and Central System, and Cantabrian range (north) showed, systematically, a 
stronger dependency to long time-scales (> 10 months). Results for the SPEI/SSI and SPI/SSI. 
Overall, the differences in the times of response of streamflow droughts to climatic drought 
suggest the complexity associated to the different mechanisms that determine this link in river 
basins. 

33..33.. Physiographical and climatological characteristics

Physiographical characteristics displayed in Figure 9 showed that the average water holding 
capacity (whc) in most of the basins is estimated in the range of 45-55 mm (Figure 9a). Spatial 
differences demonstrated that some basins present higher rates of whc, mostly corresponding 
to those basins that recorded the maximum correlations between the SSI and the climatic 
drought indices at longer time-scales. These basins also matched with those characterized by 
high percentages of chalky soils (Figure 9b) mostly located in the north and east of Spain 
(corresponding with calcareous mountain streams). Probably, chalk aquifers associated to these 
basins are the responsible to low infiltration dynamics that determine the slow response to 
drought observed in previous results. Clay soils mainly dominate in basins from the north and 
northeastern Spain although in the south, also most of the basins from Andalusia 
Mediterranean basins showed a high percentage of clays (Figure 9c). These basins also 
presented high to medium rates of whc due to the high retention capacity of these type of 
permeable soils, tended to response also at medium to longer time-scales. Lastly, most of the 
basins with major percentage of siliceous soils are located in humid regions of Spain (northwest 
and central of Spain) and in some tributaries of Guadalquivir river with headwaters located in 
Sierra Morena) (Figure 9d). Basins from central Spain and Sierra Morena showed the lowest 
rates of whc but in contrast, the rates recorded by Galician basins were higher.  

44.. Discussion. 

In this study we have performed a dual analysis. On one hand, we provided a comprehensive 
view of the performance of seven climatic drought indices and their efficacy to detect 
streamflow response in 226 unregulated basins in peninsular Spain for the period 1962-2013. 
On the other hand, we tried to identify spatial patterns in the response of streamflow to 
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climatic drought indices. To this end, we regarded the association of the SPEI, the SPI, the SPDI 
and the PDSIs with the standardized streamflow (SSI) by calculating Pearson's correlation 
coefficients. A comparison between the seven drought indices results revealed that the 
magnitude of the correlation coefficients vary significantly among type of indices. Aware of the 
shortcomings associated to the PDSIs (Vicente-Serrano et al., 2011), authors noticed that the 
median magnitude of the maximum correlations achieved by any of the PDSIs was relatively 
higher than what it was expected. More specifically, the Z-index showed to be more sensitive in 
reflecting the manifestation of streamflow droughts compared to the rest of the PDSIs. In 
Iberian Peninsula little references to previous studies performing any of the PDSIs for hydro-
climatological purposes were found (Ortega-Gómez et al., 2018; Vicente-Serrano et al., 2012; 
Von Gunten et al., 2016). In the context of Mediterranean region, Vasiliades and Loukas, (2009) 
conducted a similar investigation in a basin located in Thessaly (Greece) where they correlated 
simulated streamflow values with three Palmer drought indices and a modification of the PDSI. 
The observed correlations ranged between 0.69 and 0.74 in the case of the Z-index, 0.78 and 
0.80 for the PDSI and 0.69 and 0.71 for the PHDI. These magnitudes are in line with the ones 
observed in our study. Even the PHDI, was also found by these authors as the Palmer family 
index which exhibited the lowest maximum correlations. Contrary to their results that set up 
the maximum correlations of the PDSIs analysed in December and January, we found May as 
the month in which any of the four PDSIs registered the highest median maximum correlations. 
We interpret these high correlations in May as a consequence of the soil moisture conditions of 
the preceding months, usually corresponding with the rainy season over a large part of the 
region. The PDSI drought detection ability relates with annual time-scales while the Z-index, as a 
soil moisture-drought index, is more sensitive to water deficiencies at shorter time-scales 
(Wang et al., 2015). At this respect and as we will tackle later, the Z-index was found the fourth 
best-correlated drought index here assessed, displaying a similar performance to the multi-
scalar drought indices and depicting an outperformance in comparison  with the other PDSIs. 
Similarly to our observations, Vicente-Serrano et al. (2012) observed by over different river 
basins at global scale higher magnitudes in the correlations between the Z-index and 
standardized streamflow than with any other PDSIs. However, contrary to our results 
concerning the PDSIs performance, Haslinger et al. (2014) observed in their study conducted in 
Austria a stronger relationship between the self-calibrated version of the PDSI and streamflow 
than the Z-index, attributing this to the weaker performance of the latter in low flow scenarios. 
Here we considered the whole period, not distinguishing between low and high flow periods, 
for this reason we found our results consistent, as we support the initial hypothesis on the 
response of undisturbed basins to droughts at short time-scales. 

Yet, our results demonstrated that the multi-scalar drought indices, calculated at different time-
scales (the SPEI, the SPI, the SPDI), presented a superior capability to capture the hydro-
climatological associations in comparison to the uni-scalar drought indices (PDSIs). The flexibility 
and comparability over time and space, independently on the climatological or environmental 
characteristics these indices provide, is the main reason for their primacy (Liu et al., 2019; 
Vicente-Serrano et al., 2011). The median magnitude of the correlations recorded with the SSI 
showed a high agreement during all months of the year, especially from February to May (r ~
0.85). The months of November and December were an exception as the averaged correlations 
were generally lower in all the indices (r ~ 0.55). This is in consistency with previous 



comparative studies in different regions where multi-scalar drought indices demonstrated a 
great efficacy on hydrological drought characterization (Dogan et al., 2012; Lorenzo-Lacruz et 
al., 2013; Peña-Gallardo et al., 2019; Wang et al., 2015; Zhai et al., 2010).  Comparing to prior 
studies, it was observed that the magnitude of the correlations between the climatic drought 
indices and the streamflow vary significantly depending on the degree of the 
anthropogenic impact on river basins. For example, in the analysis conducted by López-Moreno 
et al. (2013), Lorenzo-Lacruz et al. (2013b) and Zhai et al. (2010) in highly regulated river basins , 
the association between climatic droughts and streamflow was lower than the observed under 
near-natural conditions. In these cases, the response of streamflow to drought is not limited to 
natural mechanisms but to disruptive factors which may mitigate or sharpen the effects of 
climatic droughts on streamflow (Rangecroft et al., 2018; Tijdeman et al., 2018). 

Precipitation proved to be the major limiting factor that would cause effect on streamflow over 
the influence role that AED would have. Yang et al. (2018) recently demonstrated the major 
sensitivity of surface runoff to changes in potential evapotranspiration in comparison to 
changes in precipitation over past observation and projections for the 21st century globally. 
However little seasonal variations in the performance of the SPI in comparison to the SPEI/SPDI 
demonstrated a slightly diminish in the magnitude of the correlations recorded by the SPI and 
the SSI in August. At this respect, in Iberian Peninsula this task has been already assessed by 
Vicente-Serrano et al. (2014) under unregulated conditions. These authors found a greater 
response of the SPEI to the SSI during summer months due to the increase of the AED even 
when precipitation variability was the main responsible of streamflow’s sensitivity to humid/dry 
conditions. In a comparable setup, the differences in the relationship observed in our study, 
during summer months among these two indices and the SSI were insignificant. 

Overall, we did not find significant general differences among the three multi-scalar drought 
indices, and the seasonal variations were minor. The median maximum correlation coefficient 
for the SPI was r = 0.84 while for the SPEI and the SPDI was r = 0.85. Although the SPDI was 
found the most correlated index in a greater percentage of basins, the differences in the 
magnitudes of these correlations are negligible. Consequently, we consider correct the 
applicability of any of them for analysis of the impact of drought on the streamflow response. 

The results also reflected the existence of different times of response of streamflow to climatic 
drought in peninsular Spain. Thus, we observed that strongest correlations were recorded at 
short time-scales in a major percentage of basins, especially on a 2-month time-scale with 
maxima reaching in November, April and July. In line with our results, Vicente-Serrano and 
López-Moreno, (2005) also found in a closed and unregulated basin located in the central 
Spanish Pyrenees high correlations in the month of November at short time-scales (1 to-2-
month). In contrast, studies performed in regulated river basins found that streamflow drought 
and climatic droughts were more related at longer time-scales (López-Moreno et al., 2013; 
Lorenzo-Lacruz et al., 2010, 2013b), mostly due to the multiple practices associated to the 
regulation of water resources. In keeping with this latter idea, we found out some exceptions 
indicating a complex heterogeneity response in typically headwater basins not regulated, as 
already has been reported by Peña-Gallardo et al. (2019) in 289 undisturbed basins in the U.S. 
and Barker et al. (2016) in 121 near-natural basins in the UK. Thus, no dissimilarities in the 



climatic conditions from the 226 basins analysed were observed when comparing with the 
maximum correlations achieved between the SSI and the climatic drought indices. However, 
when we attended to the physiographical characteristics of the surface occupied by the basins, 
we noticed that mostly lithological characteristics in conjunction with the water holding capacity 
helped to understand the differences observed on the timings of response to drought 
conditions on streams from basins located in diverse regions of Spain. These results emphasized 
the basic assumption that many non-climatic local factors also influence the link between 
climate and streamflow even under unregulated regimens (Van Loon and Laaha, 2015). At this 
respect, physiographic characteristics were decisive to explain the behavior of these basins. 
Thus, these basins previously mentioned where located in the main chalky regions. This 
lithology is characterized by its permeability and high transmissivity and it is associated to chalk 
aquifers that operate as a reservoir in these regimens thanks to the aquifer recharge any time a 
precipitation deficit occurs. Our findings were supported by  Lorenzo-Lacruz et al. (2013a) who 
showed similar results to ours in a selection of 58 unregulated basins in Iberian Peninsula 
(specifically most of these basins are located in Iberian System). At the same time, the elevation, 
the vegetation cover and the land-use are influential factors that influence the hydrological 
cycle processes making a substantial difference in the response of basins with diverse 
characteristics to drought.  

55.. Conclusions. 

 Strong correlations were found between the seven drought indices here assessed and 
the standardized streamflow. Multi-scalar drought indices excelled as the most suitable 
tools for hydrological drought purposes. Not having found significant differences in the 
performance of the SPEI, the SPI or the SPDI, authors suggest the interchangeably use 
of any of them.  

 There is a seasonal component in the response of streamflow to climate that determine 
the propagation from climatic drought to hydrological drought. 

 Undisturbed river basins in peninsular Spain mainly respond to short time-scales, 
emphasizing the role of precipitation as the major climatic driver in streamflow 
droughts. 

 In line with the latter point, there is a complexity associated to the propagation of 
climatic drought to streamflow under near-natural conditions. We identified a wide 
range of temporal responses in peninsular Spain river basins related to local non-
climatic characteristics such physiography and vegetation cover. 

Authors are aware of the limitations involved in this kind of general analysis and are 
encouraged to work on further analysis necessary to fully understand the influence of the 
non-climatic mechanisms controlling the delayed response of streamflow to climatic 
drought in the basins here assessed.   

TTaabblleess

Table 1. Percentage of basins per index and time-scale at which the maximum correlations were 
found. Notice that long time-scales from 13 to 48-month where summarized in two groups (13-
24 and >24-month) due the low percentages recorded individually. 



11 22 33 44 55 66 77 88 99 1100 1111 1122 1133--2244 >> 2244

SSPPII 7.93 33.04 14.54 7.93 8.37 3.08 4.41 3.52 0.44 1.32 1.32 1.76 4.41 7.93

SSPPDDII 14.98 42.29 14.10 5.73 3.52 3.08 0.88 1.32 0.88 1.32 0.88 0.88 2.64 7.49

SSPPEEII 10.13 36.12 15.86 8.37 6.61 3.52 0.88 2.20 0.88 1.32 0.44 0.44 4.41 8.81

Averaged (%) 11.01 37.15 14.83 7.34 6.17 3.23 2.06 2.35 0.73 1.32 0.88 1.03 3.82 8.08

Figure 1. Location of the available (black dots) and selected (yellow dots) streamflow gauging 
stations.  



Figure 2. Box plots showing the strongest correlation coefficients found between climatic 
drought indices and the SSI for the 226 natural basins considered in this study. The solid black 
line shows the median, the white asterisk shows the mean, and the dashed black line shows the 
p < 0.05 significance level. 



Figure 3. Spatial distribution of the highest correlation coefficients between the climatic drought indices and the SSI independently of the month of the 
year and drought time-scale. 



Figure 4. Boxplots showing the monthly Pearson correlation coefficients obtained between series of the SSI and the seven drought indices. The dashed 
solid black line corresponds to the median, the white asterisk the mean and the dashed black line the p < 0.05 significance level. 



Figure 5. Maximum correlation scatterplots of index pairs (SPEI, SPI, SPDI and Z-index). Each point corresponds to the highest Pearson’s correlation 
coefficient recorded in each basin. 



Figure 6. Spatial distribution of the drought indices having the strongest correlations with the 
SSI and the percentage in each case. 



Figure 7. Spatial distribution of the monthly highest correlation coefficients between the SPDI and the SSI independently of the month and time-scale.



Figure 8. Spatial distribution of the time-scales at which monthly highest correlation coefficients between the SPDI and the SSI were found. 



Figure 9. Water holding capacity (a) and percentage of surface characterized by the dominant lithology (b, c, d) of the analysed basins. 
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Human mortality and climate indices in Spain 



1. Introduction 

Although climate conditions affect human health, physiology, and mortality1, understanding the 

impacts of climate change and variability on human health is a challenge. In the context of climate 

change, a higher frequency of extreme events (e.g. heatwaves, droughts, etc) has been reported in 

numerous studies at different spatial scales ranging from local to global scales2,3,4,5. Several studies have 

been conducted to understand the relationships between human mortality and heatwaves6,7,8,9. Most of 

these studies indicate that heatwaves increase human mortality. A representative example is the 2003 

heatwave in which 44,000 excess fatalities in Europe were reported by the World Health Organization  

(WHO)10,11. However, it is not only heatwaves that can have a high impact on mortality, but cold 

waves12,13 and drought events14,15,16,17 can also have a major impact on mortality. Epidemiological 

evidences indicate that part of the deaths caused by cold waves ar due to their infectious nature, while 

an increase in the number of deaths during heat waves is caused by the direct effects of heat stress on 

the individual metabolism13. Drought, on the other hand, has also significant health impacts, including 

an increasing risk of morbidity and mortality14. Also, drought has indirect effects on human health and 

mortality, as deaths in this case may be caused by the reduction of water resources quantity and quality, 

crop and food production, or an increased risk of heat-waves and wildfires, among others18.  

The ways in which climate can impact mortality vary considerably, as a function of seasons and 

dominant climatic conditions19,20,21. Seasonally, the increased mortality during cold months is well-

established in relation warm months20,22,23. Causes of death, which are more associated with 

temperature changes, are circulatory and respiratory diseases19. Furthermore, it is important to note 

that seasonal and annual flu epidemics involve a high level of hospitalizations and winter mortality24.  

Although mortality is conditioned by climatic conditions, other socio-demographic characteristic, 

such as age, socioeconomic status, and number of inhabitants, can impact this dependency. There is 

evidence that climate conditions have a particular impact on elderly 

population7, mainly due to the decreased physiological capacity to regulate body core temperature25. In 

this regard, the spatial distribution of elderly population allows to define which regions are more 

sensitive to the impact of climate changes on mortality.  

Although most investigations about the relationship between climatic conditions and mortality 

take into account the effects of temperatures on mortality26,27,28, other important climatic variables that 



can affect mortality (e.g. precipitation, wind, radiation, cloud cover, etc.) have received less attention in 

the literature. For example, precipitation drives droughts; wind conditions influence pollution; and 

cloudiness affect precipitation. It is therefore important to have a catalog of comprehensive climate 

indices, which can be used to understand the impacts of different climatic factors on mortality rates. 

Many efforts have been made to develop climatic indices to understand the evolution and state of 

climate29,30,31,32,33. These climatic indices have been employed in a number of previous studies to assess 

the impacts of climate on various sectors, such as the impact of drought on agriculture34 or water 

resources35, among others. Recently, the database and cartographic viewer “INDECIS dataset” include  

the highest range of climatic indices (125) for Europe. These indices were published with the aim of 

serving as a tool to evaluate the impact of climate on different sectors36 (https://indecis.csic.es/). This 

database contains the largest variety of climatic indices, provided at a high spatial resolution and for a 

continuous and updated period. Also, the “ECTACI database” has been published recently by Peña-

Angulo37 (https://ectaci.csic.es/), allowing for characterizing climatology, variability and trends of the 

125 indices of the INDECIS database.  

This study employs the INDECIS climatic dataset to assess the impacts of climate on natural 

death. The study is carried out in the mainland Spain, which has interesting socio-demographic and 

climatic characteristics. Specifically, like the whole Spanish territory, the mainland Spain  is characterized 

by high rates of elderly populations and correspondingly a low birth rate8,38,39. Also, Spain is 

characterized by strong spatial and temporal variability of climate, with several configurations driving 

this variability (e.g.  Atlantic, Mediterranean, sub-tropical, etc.). Specifically, the mainland Spain has 

witnessed frequent extreme heat events, which can induce high mortality rates. Overall, these 

demographic and climatic features make the mainland Spain a good base region to assess the spatial 

and temporal variability of  mortality in response to climate change and variability. Overall, this study 

aims to: i) assess the spatial and seasonal distributions of mortality in mainland Spain; and ii) analyze the 

relationship between climatic indices and mortality taking into account  spatial, seasonal, and inter-

index differences. 

1. Results  

2.1 Spatial and seasonal distribution of natural deaths in mainland Spain 

Results indicate large spatial differences in natural deaths, which are linked to the way in which the 

percentage of elderly population varies across the study domain. Figure 3 depicts the spatial distribution 

https://ectaci.csic.es/
https://indecis.csic.es/


of the ageing index and the number of natural deaths, compared to the total population in the mainland 

Spain in 2015. As illustrated, the Northwest territory had a higher ageing index and natural deaths, while 

the eastern and southern regions had a lower ageing index and natural deaths. As expected, there is a 

high spatial agreement between provinces exhibiting the largest percentage of elders and those with 

the highest number of deaths (e.g. Ourense, Lugo, Zamora, Teruel, Soria, Cuenca, Ávila, and Palencia). In 

contrast, provinces with lower percentages of elders witnessed the lowest number of deaths (e.g. 

Madrid, Alava, Cadiz, Almeria, Murcia, Sevilla, and Guadalajara). 

Spatially, we defined two main patterns summarizing the links between the number of natural 

deaths and climatic conditions dominating in the study domain. First, the provinces with the highest 

mortality and aging were located mainly in northwestern provinces characterized by low winter 

temperatures. Second, younger population and smallest death rates were distributed in southern 

provinces, with high summer temperatures and moderate temperatures.   

Temporarily, results suggest strong seasonal variability of the number of natural deaths. The least 

mortality rates occurred during summertime, while the largest numbers recorded in winter. Figure 4 

shows the regional series of natural deaths, calculated for each season independently. As illustrated, a 

higher number of deaths was observed in winter, followed by spring. The lowest numbers of death cases 

were recorded in summer and autumn.  Unsurprisingly, a marked peak of natural deaths was noted In 

summer of 2003,  which corresponded to the anomalous heatwave that triggered most of Europe in 

2003. On the other hand, winter exhibited higher variability of natural deaths than other seasons.  

2.2 Dependency between climatic indices and mortality rates in mainland Spain 

Results reveal strong seasonal differences in climate-mortality association. Figure 5 illustrates 

correlation coefficients computed between regional series of natural deaths and 79 climate indices. 

Results are presented for each season. As illustrated, correlations were higher and statistically 

significant in winter and summer. Conversely,  Pearson´s r coefficients were much lower and mostly 

non-significant in spring and autumn. In winter, many climate indices exhibited strong negative 

correlations with natural deaths, while correlations were mostly positive in summer. For cold-

day indices (e.g. CFD, CSDI, AT, and WCI), as well as radiation indices (e.g. SND, SSD, and 

SSP), positive correlation with the number of natural  deaths was found during wintertime. Contrarily, 

negative correlations were found for temperature indices associated with warm days (e.g. XTG, XTN, HI, 



and UTCI), cloudiness indies (e.g. CC, FOD), wind indices (e.g. FG, FG6Bft, and FXX), and most 

precipitation indices (e.g. RTI, PRCPTOT). In summer, natural deaths showed negative correlations for 

few indices (e.g. DTR and FOD), while the majority of indices were positively correlated with the number 

of natural deaths. Typically, this was the case for indices related to mean, minimum, and maximum 

temperatures like CSD, D32, DD17, TN90p, TX90p, VWD, and WSDI.  

Overall, results indicated that the frequency of cold days contributed to an increase in mortality rate 

during wintertime. Rather, high frequency of warm days during winter caused it to decrease. Most 

climate indices, especially thermal indices, showed positive correlations with the number of natural 

deaths during summer. Specifically, VDTR, CC, VWD, and WSDI showed the highest correlations with 

natural deaths. In winter, indices showing highest correlations were CFD, FD, SND, SSD, SSP, CC, and 

FOD. Notably, in both cases, precipitation indices exhibited remarkably negative correlations with the 

number of natural deaths, being much stronger in winter than in summer.  

Also, the above-described relationships were supported by a spatial analysis that considered these 

associations, but at the province level (Figure 6). At he the province level, it was assured that higher 

correlations between climate indices and natural deaths were higher in winter and summer, compared 

to spring and autumn. However, the sign of association and the corresponding spatial distributions were 

different between these two seasons. Warm indices showed strong correlations with natural deaths, 

especially for WCI, UTCI, HI, AT, WSDI, TR, TX90p, and TN90p during summer. However, consistent 

spatial patterns cannot be identified. In the western provinces, precipitation indices showed higher 

correlations than other provinces.  

Figure 7 illustrates the spatial distribution of correlation coefficients calculated between the number 

of natural deaths and a set of significant  temperature (FD, WSDI), precipitation (RTI) and 

cloud/radiation (CC, SSP) indices. Results are presented fpr winter and summer.  The FD index, defined 

as the total number of days with minimum temperature lower than 0°C, indicated higher correlations 

with natural deaths during wintertime, mainly in the western provinces. The WSDI index, which counts 

periods with at least 6 consecutive days with maximum air temperatures exceeding the 90th percentile

of maximum air temperature distribution, correlated significantly and positively with natural deaths 

during summer. This strong dependency was evident for the whole study domain. On the contrary, 

correlations were not statistically significant in winter, but with strong differences between maritime 

and continental provinces. Both RTI (total precipitation) and CC indices (daily mean cloud cover) 



revealed consistent seasonal and spatial patterns. Specifically, they showed strong negative correlations 

with natural deaths during wintertime, especially in  the western provinces. In contrast, this dependency 

was statistically non-significant during summer, with no clear spatial patterns. Similarly, the SSP index 

(sunshine duration fraction) and CC (daily mean cloud cover) exhibited consistent spatial patterns in 

their relations with natural deaths, albeit with opposite correlation sign. 

2. Discussion 

3.1 Spatial and seasonal distribution of natural deaths in mainland Spain 

The greatest number of natural deaths with respect to total populations was found mainly in 

northwestern provinces of the mainland Spain, where elderly populations and colder climate conditions 

eare predominnat.  Overall, as compared to other European countries, Spain is characterized 

demographically by a considerable percentage of elders (above 65 years old), with an increasing ternd of 

life expectancy and correspondingly lower birth rates40. Indeed, there are important social and 

economic implications of these demographic characteristics, especially for healthcare services. 

Furthermore, the spatial distribution of the aging population is strongly heterogenous, given that more 

innovative regions (urban areas) attract young people from rural areas. Historically, the differences 

between urban and rural regions in terms of innovation and aging population have grown rapidly40. In 

Spain, there are higher ageing rates over northern and northwestern regions, while lower ageing 

population is a characteristic of  Madrid and southern regions41. From a climatic perspective, northern 

and northwestern portions of the mainland Spain are characterized by colder, but seasonally dependent 

climate. Several studies have reported that elderly populations are mostly impacted by extreme weather 

events like heat and cold waves8,42,43,44. This is typically the case n the  mainland Spain, where regions of 

elderly poulations are ubjected to frequent and more severe extreme events45.  

Furthermore, the number of natural deaths in relation to climatic conditions was assessed on a 

seasonal basis. As compared to other seasons, higher and significant number of deaths ocuured in 

winter periods, mainly due to below-normal temperatures. A range of earlier studies have  presented 

similar results12,46,47. 

There are several biological processes underlying high and low ambient temperatures. According to 

Gasparrini47, in cold regions, mortality is associated more with cardiovascular and respiratory effects. In 

contrast, mortality is related to cardiovascular effects in warm regions, as body exceeds its 



thermoregulatory threshold. Our study indicates that it is not only heatwaves that should be taken into 

account. Rather, that cold waves could have a higher risk for populations. In the Spanish case, poulations 

of elderly population are located in the coldest regions, with increased environmental vulnerability to 

extreme cold48. 

3.2 Dependency between climatic indices and mortality in mainland Spain

Findings of this study indicate seasonal differences in the response of mortality rates to climatic 

conditions in the mainland Spain. Natural deaths mostly correspond to summer and winter than to 

spring and autumn.  This is expected because extreme events that affect natural deaths occur both in 

winter and summer. Nonetheless, climate indices have an opposed relationship with natural deaths in 

winter and summer. Specifically, climate indices related to high winter temperatures correlate 

negatively with natural deaths, while they have positive correlations during summertime. In winter, the 

number of natural fatalities increases when cold waves occur, suggesting that indices related to cold 

temperatures have major influence on mortality rates during winter. Many studies have indicated that -

during summer- heatwaves increase natural deaths7,9,11,27,28, although studies analyzing the effect of cold 

waves on mortality are limited49,50.  

From a spatial perspective, considerable seasonal differences in the relationship between mortality 

rates and climatic indices can be found. In general, indices of extreme warm temperatures show a 

significant positive correlation with natural deaths across the entire territory, especially in summer. In 

winter, indices relateed to extreme cold temperature events exhibit a significant positive correlation 

with natural deaths. This was the case in the study domain, especially western provences of the study 

domain.  On the other hand, precipitation and cloudiness indices showed negative correlations with 

natural deaths, mainly in winter and in western provinces. In this vien, Salvador17 noted that western 

portions of the mainland Spain have  the highest daily mortality risks associated with drought related 

conditions. This finding is confirmed in this study, particulalry in the western provinces, where there has 

been an increase in natural deaths during periods of drought, while the natural deaths decrease in wet 

periods.  

Numerous studies have focused on the relationship between temperature and mortality28,44,49. 

However, few investigations have addressed the association between precipitation and mortality51. 



Most work about precipitation-mortality dependency have indicated that there can be an increase in the 

number of fatal accidents due to flood or water contamination52. 

In this study, precipitation indices correlate negatively with natural deaths during winter and 

summer, albeit with much stronger correlation during wintertime.  This relationship can be explained by 

the notion that – during rainy days- there is an increase in air temperature due to latent heat released 

when atmospheric water vapor condenses53. The reduction of air pollution levels during wet events is 

another factor that can explain the decrease of natural deaths in winter54,55. Similar to precipitation 

indices, cloudiness indices have similar correlations with natural deaths during summer and winter (i.e. 

negative signal). Rather, radiation indices show an opposite feedback, with positive correlation with 

mortality rates. In summer more radiation, higher temperature, and a greater number of natural deaths 

seem to be logical. This situation is completely different during winter, as more radiation implies higher 

daytime temperatures, and conversely clear-sky nights induce  a large radiative deficit and accordingly a 

strong decline of air temperatures56, which has an impact on mortality. 

This study provides useful information for health prevention plans in the mainland Spain, given that 

it indicates that the highest number of natural deaths occur in winter, mainly in the northwestern 

provinces of the study domain. Elderly populations and colder air temperatures predominate in these 

regions. Furthermore, climatic indices indicate that cold winter extremes, combined with precipitation 

deficits, and a reduction of cloudiness can increase mortality.  

Our findings demonstrate the utility of employing a large number of climatic indices, based on 

different climatic variables, to assess the dependency of natural deaths on climatic conditions. This 

study uses, for the first time, a large database of climate indices for a relatively long period (1979-2016) 

and for a wide domain (mainland Spain) to assess the possible impacts of climate on mortality rates. This 

study allowed to define climate indices with major influence on natural deaths. Furthermore, this work 

enabled us to explore the varying seasonal responses of mortality rates to climatic conditions and to 

determine which indicators are most relevant during each season. In this regard, this study reveals that 

a high number of natural deaths are found in winter, suggesting that cold-related mortality is an 

important aspect of this spatial domain that should be taken into consideration by local planners. While 

many previous studies have focused on analyzing  deaths caused by heatwaves; our findings stress that 

cold waves should not be underestimated by public health authorities in the mainland Spain12.  



Finally, this study also offers a useful tool for demographic studies to determine areas with the 

highest mortality rates due to a very aging population. Future studies should, however, aim to improve 

spatial resolution of the study variables. Indeed, the relationships between climatic conditions and 

mortality rates can be strengthened by improving the spatial resolution of climatic data. Also, higher 

temporal resolution can be of particular importance, as it would allow assessing the delay in mortality 

effects of heat and cold waves.  

3. Conclusions  

This study analyzes spatial and seasonal distribution of natural death in the mainland Spain and their 

links to climatic conditions. This dependency was assessed using a newly developed high-resolution 

climate indices database spanning the period from 1979 to 2017. The key findings of this study can be 

summarized, as follows:  

 The study indicates that, as expected, the number of higher natural deaths in the mainland 

Spain is located in the northwestern regions of the study domain, where the percentage of the 

elderly population is the highest and climate is much colder.  

 There is a clear seasonality, with more deaths in winter than other seasons. 

 In addition to the significant thermal indices, other climatic indices, such as precipitation, 

cloudiness or radiation indices, are closely associated with the number of natural deaths.  

 The increase in the number of natural deaths is mainly linked to thermal indices (e.g.  frequency 

of cold days in winter and very warm days in summer), a both can induce higher mortality rates.  

 Precipitation indices also have a remarkably negative correlation with natural deaths, which is 

stronger in winter than in summer. The same relationship is observed between indices of 

cloudiness and mortality. Rather, radiation indices show an opposite correlation sign with 

mortality rates. 

 There are large spatial differences in the relation between climatic indices and natural deaths, 

especially during summer and winter periods. Extreme warm temperature indices show positive 

correlations with natural deaths throughout the territory, especially in summer. In contrast, 

indices related to cold extreme temperatures exhibit positive correlations with natural deaths in 

winter, mainly over western provinces. Similarly, there is a negative correlation between 

precipitation and cloudiness indices and natural deaths, especially in the western provinces 

during wintertime.   



 The association between climatic conditions and mortality rates is seasonally dependent, with 

higher correlations found for  CFD, FD, SND, SSD, SSP, CC, and FOD indices in winter, and VDTR, 

CC, VWD, and WSDI indices in summer. 

4. Methods  

5.1 Data 

Mortality was estimated from the daily records of human deaths by natural causes, provided by the 

Spanish National Statistics Institute (INE). This includes data for 47 provinces in the mainland Spain 

(Figure 1) for the period 1979-2016. Additionally, the total population of the mainland Spain (Figure 1) 

and the population distribution by age in each province in 2015 were obtained from the INE.  

Regarding climate data, we used seasonal and annual records from 79 climate indices for the 

mainland Spain spanning the period 1979-2016, at 0.25º spatial resolution. These climate indices were 

calculated using daily data from different climate variables. Data of these indices are available within the 

INDECIS project website (http://www.indecis.eu/). Further details about the main characteristics of this 

dataset are documented in Domínguez-Castro36. Principally, climate indices were grouped into eight 

broad categories: temperature (42), precipitation (21), bioclimatic (21), aridity/continentality (10), 

cloud/radiation (5), wind (6), and snow (12). A list of these selected indices is given in Figure 2. 

5.2 Methods 

In this study, data of climatic indices and natural deaths for each province were considered for 

the period 1979-2016. Data were analyzed on seasonal and annual scales. Seasons were defined as:  

winter (DJF), spring (MAM), summer (JJA), and autumn (SON).  A composite regional series for the 

mainland Spain was also constructed using an arithmetic average of all province series. To assess trends 

in the number of deaths at the province and whole region levels, changes were quantified using the 

ordinary least squares regression method, in which time was considered the independent variable, while 

the number of deaths was the dependent variable. Importantly, to limit the possible impact of trends 

presented in population data on calculating trends in the number of deaths, we detrended the series of 

number of deaths.  

http://www.indecis.eu/


In the mainland Spain, we examined the spatial distribution of natural deaths in view of the 

relationship between natural deaths and the elderly population. The ageing index is the metric used 

most commonly for the aging process, since it is simply defined as the proportion of the number of 

people over 65 years old compared with those under 16 years old (INE, 2020). The ageing index was 

calculated for each province in the mainland Spain in 2015. Also, we estimated the total of natural 

deaths during the study period with respect to the total population in each province in 2015. Herein, we 

assumed that the population of each province in 2015 is representative of the population for the whole 

study period. This assumption was verified using the coefficient of variation (CV) in years with available 

information through the INE database (https://www.ine.es/jaxiT3/Tabla.htm?t=2852&L=0). The CV did 

not exceed 0.2 in any provinces, indicating that the population is almost homogenous, with low 

dispersion over time. Finally, we looked at the climate-mortality association using Pearson’s r correlation 

analysis. Correlations were computed  between climate indices and seasonal records of natural deaths.  

The correlation analysis allowed us to define indices with stronger (positive or negative) relationship 

with natural deaths. Also, the correlation analysis was made at the province level to  define spatial 

variability in the dependency between climate and mortality.  For |r| values less than 0.320, a non-

significant correlation was defined. Accordingly, significant correlations with p-levels below 0.05 and 

0.01 were detected when |r| values exceeding 0.320 and 0.512, respectively.  

https://www.ine.es/jaxiT3/Tabla.htm?t=2852&L=0


Figure 1. Study area and total population by province in the mainland Spain in 2015. 



Figure 2. A list of climate indices used in this study, and their definitions. 

Figure 3. a) Ageing index in 2015. b) The number of natural deaths relative to the total population in 

2015. Results are presented for in each province of mainland Spain.  



Figure 4. Seasonal number of natural deaths of in the mainland Spain for the period 1979-2016. Results 

are presented for arithematcally averaged series calculated for the whold domain. 



Figure 5. Correlation coefficients between natural deaths and the 79 climate indices for the period 1979-

2016 using the arithematically averaged regional series. The horizontal white lines indicate correlation 

values corresponding to the 95% and 99% significance levels. 



Figure 6. Correlation coefficients between natural deaths and the 79 climate indices for the 

period 1979-2016. Results are presented for each province on a seasonal scale. 



Figure 7. Spatial distribution of correlation coefficients between natural deaths and some significant 

indices (FD, WSDI, RTI, CC, and SSP) in each province in the mainland Spain during winter (left) and 

summer (right) for the period 1979-2016. 
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Water sector, forest fires and landslides in Calabria 

The data collected by CNR-IRPI for the various indices, grouped for sectors, as shown in the Deliverable 
4.2, refer to the whole territory of Calabria and/or for the 5 provinces of Calabria (Cosenza, Catanzaro, 
Crotone, Vibo Valentia, and Reggio Calabria), for specific areas or sites. These data were compared to 
the climatic indices, listed in the deliverable 4.1. These indices have been evaluated using the ClimIND R 
software, by means of the climatic data (mainly, daily rainfall, minimum and maximum daily 
temperature) registered in 93 stations, managed by the Centro Funzionale Multirischi of Regione 
Calabria (ARPACAL). The same climatic data were made available in the ambit of WP2 and jointly in the 
European database of ECA&D (Figure 1).  

Figure 1. Map of the stations used for the rainfall (left) and temperature (right) data of Calabria, with 
indication of the 5 provinces. 

The comparisons were not carried out for the sector of agriculture, because there are very few data of 
water consumptions for irrigation, and for the touristic sector, because data needed for the climatic 
indices were not available for the territory. 



In the following, for each sector, first the climatic indices used are indicated and then the results of the 
comparison are shown.  

2. Water 

Among the 5 springs presented in the Deliverable 4.2, only the “Mezzafiumina” spring has been 
considered because it presents the longest registration period. The database contains the average daily 
discharge registered between 1 January 2005 and 31 December 2018. The spring data were compared 
with the climatic data registered in the San Sosti station (code 1230), which is near this spring. Figure 2 
shows the comparison of the daily mean discharge data and the daily precipitation data in the period 
above indicated. 

Figure 2. Comparison of the daily mean discharge data of the “Mezzafiumina” spring (l/sec) with the 
daily rainfall data of the San Sosti station (period 1 January 2005 – 31 December 2018). 

The discharge data averaged in each month have been compared with the monthly data of the following 
climatic indices: 

- Monthly rainfall 

- U.N.E.P. Aridity Index evaluated on a monthly basis;

- S.P.I. (Standard Precipitation Index) evaluated on 3-6-12-24 months;

- S.P.E.I. (Standard Precipitation Evapotranspiration index) evaluated on 3-6-12-24 months. 



Regarding the discharge data, since the database presents several missing daily data, in the evaluation 
of the monthly data only the months with at least 10 daily data have been considered. 

The comparisons of the climatic indices values with the discharge data do not seem to show particular 
correlations. Figures 3-5 show the best matches between the two databases, considering the monthly 
rainfall (Figure 3), the UNEP monthly values (Figure 4) and SPEI-3 monthly vales (Figure 5).       

Figure 3. Comparison of the monthly discharge data of the “Mezzafiumina” spring (l/sec) with the San 
Sosti monthly rainfall (mm). 

Figure 4. Comparison of the monthly discharge data of the “Mezzafiumina” spring (l/sec) with the San 
Sosti UNEP monthly values. 



Figure 5. Comparison of the monthly discharge data of the “Mezzafiumina” spring (l/sec) with the San 
Sosti SPEI-3 values. 

Correlations seem to be clearer comparing the minimum values (on a 12-month timespan) of the 
average monthly discharge and SPI and SPEI values. In particular, Figures 6 and 7 show the comparison 
of the minimum values of discharge with the SPI-3 and SPI-12 values, respectively. 

Figure 6. Comparison of the minimum vales (evaluated on 12 previous months) of monthly discharge 
data of the “Mezzafiumina” spring (l/sec) with the San Sosti SPI3 values.



Figure 7. Comparison of the minimum vales (evaluated on 12 previous months) of monthly discharge 
data of the “Mezzafiumina” spring (l/sec) with the San Sosti SPI12 values.

3. Forest fire 

Data about the burnt areas (monthly data of extension - in hectares - and the number of fires in the 

period 2008-2018), provided by means of the module “Rapid Damage Assessment” (R.D.A.) of E.F.F.I.S. 

(European Forest Fire Information System) and included in the Deliverable 4.2, have been compared 

with the Keetch-Byram Drought Index (KBDI). This index, ranging between 0 and 203.2 (extreme dry 

condition of the soil) is used all over the world for monitoring and forecasting forest fires. The index was 

calculated with the daily data of all the selected stations and then the monthly mean values were 

evaluated. The missing data problem was overcome considering only the months with at least 20 daily 

data. Given that the data of the forest fires are available for each province (summing the data of the 

municipalities included in each province), the KBDI values were averaged for each province. 

The comparison results show that the peaks of the burnt areas almost always correspond with the 

highest of the KDBI values, but not for all the provinces. Analogous results were obtained considering 

the number of fires.

Figures 8 and 9 show the results for the provinces of Cosenza and Reggio Calabria, where the agreement 

seems to be clearer. A short delay between the peak occurrence of KDBI and the burnt areas/number of 

fires are present in all the comparisons.

Figure 10 shows the results for the whole territory of the Calabria region. 



This comparison was also made for the territory of the Sila National Park (study area used for the 

touristic sector in this Project), whose fire data were included in the Deliverable 4.2. The comparison did 

not show good results.

Anyhow, it is important to underline that:

 the KBDI monthly mean values is evaluated by means of a database with a variable number of 

monthly values owing to missing data.

 The number of fires and the extension of burnt areas are influenced not only by climatic 

conditions but also by anthropic factors.

 The extension of the burnt areas depends on the efficiency of the fire monitoring system and 

by the rapidity of first response operations.

 The RDA module database of EFFIS is referred to burnt areas with extension greater than 30 

hectares (in Europe, these fires are about 75-80% of the total fires) and does not contain 

differences between natural fires and human-induced fires. 

Figure 8 – Comparisons of KBDI monthly mean values with burnt areas (in hectares) (left) or number of 

fires (right) for the territory of the Cosenza province. 

Figure 9 – Comparisons of KBDI monthly mean values with burnt areas (in hectares) (left) or number of 

fires (right) for the territory of the Reggio Calabria province. 



Figure 10 – Comparisons of KBDI monthly mean values with burnt areas (in hectares) (left) or number of 

fires (right) for the whole territory of the Calabria region. 

4. Disaster Risk 

The data regarding disasters caused by geo-hydrological events, included in the Deliverable 4.2, show 
for each year from 1990 to 2018 the number of events, damage and injuries. Data, collected from 
newspaper articles, technical reports, civil protection reports, etc., were provided for the whole territory 
of Calabria and for each province (Cosenza, Catanzaro, Crotone, Vibo Valentia, and Reggio Calabria). 

In the present deliverable the yearly amounts of landslides and floods (sectorial data) have been 
compared with data of the following climatic indices: 

- RT: Total precipitation (mm): annual (RTA), mothly (RTM), seasonal (RTS)

- R10mm Annual count of days when daily precipitation amount ≥ 10mm

- R20mm Annual count of days when daily precipitation amount ≥ 20mm

- R95TOT: Annual total precipitation when daily rainfall is greater than 95th-percentile

- R99TOT: Annual total precipitation when daily rainfall is greater than 99th-percentile

- R95%TOT: Precipitation fraction out of the annual total due to very wet days (daily rainfall>95th-
percentile)

- R99%TOT: Precipitation fraction out of the annual total due to extremely wet days (daily 
rainfall>99th-percentile)

- RX1day: Monthly maximum 1-day precipitation;

- RX5day: Monthly maximum 5-day precipitation;

- D50mm: Heavy precipitation days in a year (with daily rainfall >= 50 mm); 

- LWP: Maximum length of consecutive wet days (daily rainfall>=1mm);



- RTWD: Yearly precipitation amount of days with rainfall ≥ 1 mm

- DR1mm:  Number of wet days with precipitation >= 1mm;

- DR3mm:  Number of wet days with precipitation >= 3mm;

- DR10mm:  Number of wet days with precipitation >= 10mm.

Given the yearly sectorial indices have been provided for each province, the comparisons of both the 
number of landslides and floods with the climatic indices were made considering for each province both 
the average and the maximum values of the climatic indices calculated for each station belonging to the 
province. For the best matches, we tried to interpolate the two databases using a linear regression or an 
exponential curve. The correlation was tested by means of the Determination Coefficient (R2) for the 
linear regression and the Standard Error (SE) for the exponential curve.  

Regarding the landslides, the comparisons show clear agreement with the following climatic indexes: 
RTA, R10mm, R20mm, R95TOT and D50mm. Figures 11-17 show some of these comparisons. Moreover, 
Figures 18-21 show some interpolations between the data of landslides and climatic indices and the 
expressions of the interpolation curves. 

Figure 11 – Comparison of the territorial maximum values of annual rainfall (RTA) with the annual 

number of landslide in the Reggio Calabria province. 



Figure 12 – Comparison of the territorial average values of annual rainfall (RTA) with the annual number 

of landslides in the Cosenza province. 

Figure 13 – Comparison of the territorial average values of annual rainfall (RTA) with the annual number 

of landslides in the whole territory of the Calabria region. 



Figure 14 – Comparison of the territorial average values of the annual count of days when daily 

precipitation amount ≥ 10mm (R10mm) with the annual number of landslides in the Cosenza province. 

Figure 15 – Comparison of the territorial average values of the annual count of days when daily 

precipitation amount ≥ 10mm (R10mm) with the annual number of landslides in the whole territory of 

the Calabria region. 



Figure 16 – Comparison of the territorial maximum values of the annual count of days when daily 

precipitation amount ≥ 20mm (R20mm) with the annual number of landslides in the Cosenza province. 



Figure 17 – Comparison of the territorial average values of the heavy precipitation days in a year (with 

daily rainfall >= 50 mm) (D50mm) with the annual landslide amount in the whole territory of the 

Calabria region. 

Figure 18 – Interpolation curve between the territorial average values of annual rainfall (RTA) and the 

annual number of landslides in the Cosenza province. 



Figure 19 – Interpolation curve between the territorial average values of the annual count of days when 

daily precipitation amount ≥ 10mm (R10mm) and the annual number of landslides in the Cosenza 

province. 

Figure 20 – Interpolation curve between the territorial maximum values of the annual count of days 

when daily precipitation amount ≥ 20mm (R20mm) and the annual number of landslides in the Cosenza 

province. 

SE = 26,85



Figure 21 – Interpolation between the territorial average values of the heavy precipitation days in a year 

(with daily rainfall >= 50 mm) (D50mm) and the annual umber of landslides in the whole territory of the 

Calabria region. 

Generally, the best agreements were obtained for large province territories (such as Catanzaro, Cosenza, 
and Reggio Calabria). The results of the others provinces (Vibo Valentia and Crotone) present weak 
agreements. 

Regarding the flood events, the comparisons with the climatic indices are weaker than those obtained 
with landslides, for the characteristics of the rivers in Calabria. These are often called “fiumare” (small 
rivers) and are highly irregular: they are very often dry but can become raging torrents after short and 
heavy rainfall events. This is due to the fact that Calabrian rivers rise in rockly gullies and tumble down 
steep gradients before reaching gentle valley rivers with pebble beds. In fact, the Time of Concentration 
of their basins is very low (only very few hours). The rivers with these characteristics can cause floods 
and consequent damage. For these reasons, the rainfall daily data and, summing them, the monthly and 
yearly data present low agreemnts with the number of floods, which are mostly influenced by extreme 
hourly rainfall. 

Nevertheless, comparisons show the best matches with the following climatic indexes: R95TOT, D50mm,  
R99F. Figures 22-25 show some of these comparisons. Moreover, Figures 26-28 show some 
interpolations between data of floods and climatic indices values and the expression of the interpolation 
curves. 



Figure 22 – Comparison of the territorial average values of the annual total precipitation when daily 

rainfall is greater than 95th-percentile (R95TOT) with the annual number of floods for the Crotone 

province. 

Figure 23 – Comparison of the territorial maximum values of the annual total precipitation when daily 

rainfall is greater than 95th-percentile (R95TOT) with the annual number of floods for the Cosenza 

province. 



Figure 24 – Comparison of the territorial mean values of the heavy precipitation days in a year (with 

daily rainfall >= 50 mm) (D50mm) with the annual number of floods for the Reggio Calabria province. 

Figure 25 – Comparison of the territorial mean values of the precipitation fraction out of the annual 
total due to extremely wet days (daily rainfall>99th-percentile) - R99%TOT - with the annual number of 
floods for the Reggio Calabria province. 



Figure 26 – Interpolation curve between territorial maximum values of the annual total precipitation 

when daily rainfall is greater than 95th-percentile (R95TOT) and the annual number of floods for the 

Cosenza province. 

Figure 27 – Interpolation between territorial mean values of the heavy precipitation days in a year (with 

daily rainfall >= 50 mm) (D50mm) with the annual number of floods for the Reggio Calabria province. 



Figure 28 – Interpolation between the territorial mean values of the precipitation fraction out of the 

annual total due to extremely wet days (daily rainfall>99th-percentile) - R99%TOT – and the annual 

number of floods for the Reggio Calabria province. 



Using INDECIS data for simulating and forecasting groundwater 
levels in the MétéEAU Nappes website 
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1. Context
1.1. Description of MétéEAU Nappes website

The MétéEAU Nappes web-tool (Mougin et al., 2018; Mougin et al., 2020), developed by BRGM, 
allows, for some monitored points, to visualize present and future aquifer quantitative state. These data are 
available on dynamic maps and curves resulting from modelling of groundwater levels for low and high 
flows conditions (in connection with drought and flood problems). The hydrological global models used 
(GARDENIA (Thiéry, 1988) and TEMPO (Pinault, 2001)) allow from meteorological, hydrological and 
piezometric input data (combined with pumping data), the simulation and forecast of groundwater levels.
These forecasts, launched over 6 months, are compared with piezometric drought thresholds values taken 
from current prefectural regulations for water use restriction during drought. Meteorological, hydrological 
and groundwater data are provided in real time conditions and using an interoperable format over a dozen 
of case studies in France.

MétéEAU Nappes website offers a large range of services for the monitoring of the current and the 
future state of French aquifers (and thus, for management aspects, to anticipate possible deficits of water 
resources). It is a real decision-making tool for water resource management in high-stakes territories (water 
use conflicts, droughts, river floods, floods by rising groundwater level, climate change…).

Thirty public and private french stakeholders are already accessing and using the current website in 
its prototype version (DREAL, DDTM, Service de Prévision des Crues, Météo-France, Agence de l'Eau, 
Régions et Départements, EPCI, Presse, Industriels, Opérateurs numériques…).

1.2. Functions and services
The MétéEAU Nappes website offers a large set of services useful for drought and flood problems due to 
low and high groundwater levels:
• a website with reserved access (address: https://meteeaunappes.brgm.fr) and associated Informatics 

Technology services ;
• an easy-to-use and quickly understandable web interface (real-time maps and curves, dynamic data 

sheets updated at each connection; i.e. refreshed on the current date) ;
• a historical and real-time display (maps and curves) of meteorological, groundwater, and surface 

water data available from various French data providers (SCHAPI, Météo-France, BRGM) ;
• a map of the current (including real-time for some sectors) and future aquifers situation (aquifer 

behaviour forecasts) assessed using the Standard Piezometric Level Index (SPLI - Seguin, 2015, 
Vergnes et al., 2020) calculation from piezometric data of the French National Data Base ADES
portal (http://www.ades.eaufrance.fr/, Sharples et al., 2020), according to various climate forecasted 
scenarios ;

• some curves with overlay of a relevant information set (piezometric levels: formerly measured, real-
time data, forecast levels; piezometric drought/flood thresholds values; real-time river flow; real-
time rainfall) ;

• some tools associated with maps and curves: tooltips, zoom thresholds, history of chronicles, 
legend, possibility to display (or not) a point or a curve, printing ;

• using GARDENIA model, an automatic monthly refreshment of projected groundwater levels data 
with recent weather data (currently those of the previous month) ;

http://www.ades.eaufrance.fr/
https://meteeaunappes.brgm.fr/
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• a provision of metadata associated with exposed predictions (model used, time step, calibration 
period, correlation coefficient, stations used, whether or not pumping data is taken into account, 
terrain elevation at the piezometer, bibliographic reference of piezometric thresholds values 
[prefectural orders, BRGM studies…]) ;

• a dynamic private application programming interface (API); for a selected piezometer: return of the 
simulated piezometric curves and return of a point associated with the current or future SPLI 
symbology and color.

The technological devices used to achieve these services are: GPRS technology (today deployed on 
nearly 1,400 stations of the national piezometric network) to make data available every day, as well as a 
specific technical architecture based on international standards and recent technologies allowing to cross 
real-time data from different organisms and the exploitation of models already carried out.

At the beginning of 2021, the BRGM will finalize the creation of MétéEAU Nappes API and then 
propose a new design of MétéEAU Nappes website.

2. Objectives of this study
In this context, the objectives of the study performed in the framework of the INDECIS project were :

 to test the climate data available on INDECIS website (http://www.indecis.eu/data.php) for
groundwater levels simulation in contrasted aquifers, both for France and Europe ;

 based on the built models, launch groundwater levels forecasts ;
 to include the resulting models into the MétéEAU Nappes website.

As a result, new models were included into MétéEAU Nappes website and the potential for expanding it at 
the European scale demonstrated.

http://www.indecis.eu/data.php
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3. Performed work and results
Results presented in this section will be illustrated for the Aubagne piezometer (10446X0267/PIEZ), located 
near Marseille in the south-east of France (Figure 1). Results of the 12 other case studies are detailed in 
Annex A.

Figure 1 - Location of Aubagne case study near Marseille in France, and historical groundwater levels
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3.1. INDECIS climate data
The following data fields have been extracted from the INDECIS website and among the 136 sector-oriented 
climate indices (http://www.indecis.eu/docs/Deliverables/INDICIS-list_4.2.pdf): 

 “Reference evapotranspiration” (Aridity/continentality indices, number 91, ID Eto), - Monthly data 
were extracted from the grid available on http://www.indecis.eu/indices.php (Figure 2);

 “Daily precipitation amount RR”, files downloaded from the website 
http://www.indecis.eu/data.php (Figure 3) - Blended and Non-blended ECA dataset were both used
(Download predefined subsets in ASCII);

 “Potential evapotranspiration (PET)” and “6-month Standardized Precipitation Index (SPI6)”, files 
downloaded from the website http://www.indecis.eu/data.php - Monthly data were extracted from
Drought Indices data (Download predefined sets of aggregated indices data (ASCII)).

Figure 2 - Extraction of monthly “Reference evapotranspiration” near Marseille (France) on INDECIS website

http://www.indecis.eu/data.php
http://www.indecis.eu/data.php
http://www.indecis.eu/indices.php
http://www.indecis.eu/docs/Deliverables/INDICIS-list_4.2.pdf
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Figure 3 - Daily precipitation data downloaded on INDECIS website

3.2. Case studies and statistical analyses
8 case studies with meteorological stations providing both precipitation and evapotranspiration variables
and located near piezometers monitored by the BRGM were selected in France (Figure 4). The selection 
was based on the following criteria: piezometer included in the French European Water Framework 
Directive network; piezometers with real-time measurements; time-series length coherent with that of 
INDECIS meteorological data; diverse hydrogeological contexts and groundwater dynamics (reactive or 
inertial) and representativeness of a typical groundwater body. Piezometric data from these 8 French case 
sites were extracted from the national data base ADES.

Based on a review of the web services for groundwater monitoring data available at the European scale 
(Koreimann et al., 1996), 5 more case studies located in Ireland, Sweden, Denmark, Germany and Spain 
were added, where piezometric data time series were freely available (Figure 4). The list of reviewed web 
services is presented in Annex B. The piezometric data for these 5 European sites were downloaded from 
the websites of the organisations in charge of the monitoring (Umwelt Sachsen in Germany, Gobierno De 
España in Spain, Environmental Protection Agency in Ireland, SGU Geological Survey of Sweden, GEUS 
The Geological Survey of Denmark and Greenland).

The characteristics of the final set of 13 case studies for INDECIS are detailed in Figure 5.
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Figure 4 – Location of the 13 case studies considered for INDECIS. Available precipitation and evapotranspiration data from 
ECA-D and Indices grid were respectively considered depending on the piezometer location.
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Figure 5 – Table overview of datasets and results for the 13 case studies.

Country Region Precipitation 
station number

Precipitation 
station name

PET 
station 
number

PET station 
name

Piezometer code Piezometer 
name

Geology Groundwater 
dynamics

Modelling 
period 

(Gardenia)

Correlation 
coefficient - 
calibration 

(%)

Forecast
Correlation 
SPI6-IPS6 

period

Correlation 
SPI6-IPS6 

(%)

Lag time 
(months)

France BRE 434 Brest-Guipavas                           - Indices Grid 03124X0088/F Rostrenen hard-rock reactive
2005-2019 (5-

year 
initialization)

90% yes 2005-2018 74% 1

France CHA 11243
Troyes-
Barberey                          - Indices Grid 02982X0028/F Vailly

Turonian shalk 
and marls inertial

1980-2019 (5-
year 

initialization)
94% yes 1995-2018 68% 5

France BOU 745 Dijon-Longvic                            - Indices Grid 04398X0002/SONDAG Bourberain Jurassic 
limestone

reactive
1980-2019 (5-

year 
initialization)

92% yes 1974-2018 78% 1

France PACA 39 Marignane          39 Marignane          10446X0267/PIEZ Aubagne - 
l'Aumône

alluvium inertial
2001-2019

(6-year 
initialization)

90% yes 2001-2018 64% 4

France RHA 37 Lyon - St 
Exupery                       

751 Lyon-Bron                               06987A0186/S La Doua 
(Villeurbanne)

alluvium reactive
1977-2019

(2-year 
initialization)

81%  - 1976-2018 49% 1

France RHA 786 Montelimar                              786 Montelimar                              08662X0408/F Saint-Marcel-
les-Sauzet

alluvium reactive
2006-2019

(1 an 
initialisation)

76%  - 2005-2018 42% 0

France LOR 11246 Nancy-Ochey 741 Nancy-
Essey                          

02296X0038/P1 Dommartin-Les-
Toul

alluvium reactive
2003-2019

(1 an 
initialisation)

94% yes 2003-2018 68% 2

France PIC 736 Abbeville                                - Indices Grid 00104X0054/P1
Puits de la 

Ferme Delattre 
(Wirwignes)

Jurassic 
limestone

reactive
1984-2018

(5-year 
initialization)

86% yes 1967-2018 55% 3

Ireland Galway 2139 Shannon                                 2139 Shannon                                 IE_WE_G_0002_1200_0
013

Killiny limestone reactive
2003-2019

(5-year 
initialization)

94% yes 2004-2019 76% 1

Sweden Gotland 
island

5265 Hemse                                    - Indices Grid 8_4 Hemse_4
Limstone, 
sandstone, 

schists
reactive

1986-2019
(5-year 

initialization)
84% yes 1987-2019 52% 4

Denmark North 
Jutland

107 Vestervig                                - Indices Grid 22.368 Hindingvej 27 Thisted moraine, 
limestone, shalk

reactive
1985-2019

(5-year 
initialization)

86% yes 1983-2018 71% 3

Germany Dresde 14215 Muecka                                  484 Gorlitz                                 46549384 Neudorf, B 
384/68

hard-rock reactive
1991-2019

(5-year 
initialization)

88% yes 1986-2019 67% 4

Spain Granada 3932 Granada/Aerop
uerto                      

3932 Granada/Aer
opuerto                      

05.32.008 CHG Romilla - 
P4

Chauchina
Cretaceous-

Jurassic 
limestones?

inertial
1993-2017

(5-year 
initialization)

84%  - 1988-2017 30% 29
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In the MétéEAU Nappes website, it is now possible to show the hydrological situation of the groundwater 
bodies monitored by the corresponding piezometers at a given day (Figure 6). For each monitoring point, 
the groundwater level (cf. symbol color) and its instantaneous daily tendency (rise / drop / stability – cf. 
symbol type) relative to their available historical data series are presented. 

Figure 6 – hydrological situation of the 13 piezometers included in the MétéEAU Nappes website for any given day (here 
06/12/2019).

Piezometric data of all case studies have been analysed in order to define the main statistical characteristics 
of the data series using the ESTHER software (Seguin et al., 2018). In the absence of low-flow thresholds 
values, specific low-flow return period values (20, 10 and 5-year) were calculated based on the fitting of a 
statistical law on minimum mean monthly groundwater level values time series (Figure 7). Those dry and 
wet return period values can then be used to inform groundwater managers about the groundwater resource 
hydrological situation regarding its data history (Figure 8).  
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Figure 7 – Statistical analysis performed with ESTHER software for the Aubagne case study.

Figure 8 - Daily piezometric time series for the Aubagne piezometer, with the estimated low-flows threshold groundwater levels.
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For each of the 13 case studies, cross-correlation analysis between the 6-month Standard Precipitation Index 
(SPI6) and groundwater levels time monthly series were performed. For the sake of consistency, the 6-month 
Standard Piezometric Level Index (Seguin et al., 2018 ; Vernoux et al., 2012) was computed and used in 
the cross-correlations (Figure 9). The resulting correlation percentage and time lags are summarized in 
Figure 5. Figure 9 shows, for example, that the precipitations measured at the MARIGNANE station 
(STAID: 39) and summarized using the SPI6 are relatively well correlated (R=0.64) with groundwater levels 
at Aubagne (10446X0267/PIEZ) considering a time lag between the 2 signals of around 4 months. This 
shows the potential of the SPI6 for the Aubagne groundwater level forecasting.

Figure 9 - Comparison between the 6-month Standardized Precipitation Index (here called IPS_6) and the 6-month Standard 
Piezometric Level Index (here called SPLI_6).
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3.3. Rainfall-piezometric level modeling 

3.3.1. The GARDENIA lumped hydrological model
GARDENIA is a BRGM modelling tool (Figure 10) developed for rainfall/river flow/groundwater level 
budget simulation (Nicolle et al., 2014). GARDENIA (acronym for « Modèle Global À Réservoirs pour la 
simulation de DÉbits et de NIveaux Aquifères » in French) uses meteorological data time series related to 
a catchment area (precipitation and potential evapotranspiration) as input data to calculate:

 the flow rate at the outlet of a river (or spring);
 and/or the groundwater level at a given location in the underlying unconfined aquifer.

The presence of one or a set of pumping boreholes in the catchment can also be taken into account.

GARDENIA simulates the main water cycle mechanisms in a catchment (rainfall, snowmelt 
evapotranspiration, infiltration, runoff) by applying simplified physical laws to flow through successive 
reservoirs. Non-linear transfer functions improve the capability of this schematic representation to simulate 
a complex system.

The calculations can be made at a daily, weekly, 10-day, or monthly time step. Users can also choose a 
much shorter time step, e.g. half-hourly or every five minutes.

Figure 10 - Principle of GARDENIA global hydrological model for simulating the river discharges and/or piezometric levels.

3.3.2. Modeling piezometric levels for the 13 case studies
The GARDENIA model was used to calculate groundwater levels at the 13 selected piezometers (Figure 5).
The calculations were made at a daily time step using the INDECIS climate data: “Daily precipitation 
amount (RR)” and “Potential evapotranspiration (PET)” (see 3.1.), from meteorological stations or gridded 
data presented in Figure 5. No pumping withdrawals have been taken into account. The simulation periods 
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for each of the 13 piezometers are specified in Figure 5. Models calibration performance was assessed using 
correlation coefficient (R) and Efficiency criteria (Nash (Nash & Sutcliffe, 1970)).  

Calibration and validation results for the Aubagne piezometer are shown in Figure 11. Both Aubagne 
calibration and validation model’s correlation and Nash coefficient values are satisfactory. Results for the 
other case studies are presented in Annex A and their calibration performance detailed in Figure 5. For the 
13 case studies, the correlation coefficients range from 76% to 94% with an average of 88%.

Figure 11 - Results of the groundwater level modelling calibration (2009-2019) and validation (2001-2008) periods for the Aubagne 
case study.

3.3.3. Forecasting piezometric levels
For well enough calibrated models, groundwater levels forecasting starting at the beginning of summer low-
flows period until the end of the year was performed in order to provide information for water managers.
Forecasts are also feasible during high-flows conditions if a risk related to flood by rising groundwater level 
exists in a case study (this was tested for instance on Wirwignes piezometer - 00104X0054/P1, see 
Annex A).

Forecasting groundwater levels was not possible for 2 out of the 13 case studies, for the following reasons:
strong downward trend (La Doua Villeurbanne piezometer - 06987A0186/S) and episodic very low values
(Saint-Marcel-les-Sauzet - 08662X0408/F). 

Figure 12 presents the resulting groundwater piezometric levels forecasts for the Aubagne piezometer, 
launched over 6 months, according to different scenarios. Meteorological forecasting scenarios are built 
based on the probability distribution of the meteorological historical data for each day of the forecasting 
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period. Low-flows (dry, 0.9 and 0.6), median and high-flows (wet, 0.4 and 0.1) characteristic quantiles are 
used to generate the rainfall and PET time series for the forecasting period.

Figure 12 - Results of forecasts for the Aubagne case study model groundwater piezometric levels

For piezometers lacking threshold values fixed by water managers for the water use control during droughts, 
statistical threshold levels have been defined based on historical piezometric time series analyses (cf. Figure 
7 and Figure 8). Forecasts performed with GARDENIA over a 6-month period can then be compared with 
these thresholds in order to anticipate potential water shortages that may trigger water use restrictions by 
the end of the year.

In the example of the Aubagne case study, Figure 12 shows that all the forecasted groundwater level 
scenarios may remain above the drought threshold values for the 2020 low-flow period. We also see that 
the groundwater level observed during June-July 2020 is within the forecasted curve envelope, fluctuating 
between 5-year wet precipitation return period and the median precipitation forecasts.
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4. Conclusions
Modelling and seasonal forecasting of groundwater level case studies selected at the European scale have 
been included in the MétéEAU Nappes website, using the INDECIS meteorological point-scale or gridded 
data. The work performed allow the localisation of the piezometer, the visualisation of the piezometric data 
time series and the modelling and seasonal forecast of the groundwater levels. Statistical analysis allowed 
identifying correlations between some of the indices calculated in INDECIS and defining groundwater level 
thresholds for both dry and wet situations.

The public access version of MétéEAU Nappes website will be released in the beginning of 2021, including 
an Application Programming Interface (API) that will allow interested users to access the interface 
independently of its implementation.
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Annex A: Analyses and modelling results for all 
considered piezometers (Figure 5)



Piézomètre
Profondeur : 28 m

BDLisa
Socle Plutonique 
Dans Le Bassin Versant
Du Canal De Nantes À Brest 
Jusqu'Au Blavet (Non Inclus) - 195AA03

03124X0088/F - Rostrenen - mesures depuis 2005 

https://ades.eaufrance.fr/Fiche/PtEau?Code=03124X0088/F#mesures_graphiques

Comparaison sous ESTHER :

ESTHER_SPLI_6mois_piézoRostrenen 
et

ECAD_IPS_6mois_stationBREST-GUIPAVAS

Analyses and modelling results for the Rostrenen piezometer



Analyses and modelling results for the Rostrenen piezometer



Piézomètre
Profondeur : 36 m

BDLisa
Craie Marneuse Et Marnes Du Turonien Inférieur 
Du Bassin Versant De L'Aube Et De La Seine 
(Bassin Seine-Normandie) - 121AO30

02982X0028/F - Vailly - mesures depuis 1969 

https://ades.eaufrance.fr/Fiche/PtEau?Code=02982X0028/F#mesures_graphiques

Comparaison sous ESTHER :

ESTHER_SPLI_6mois_piézoVailly 
et

ECAD_IPS_6mois_stationTROYES

Analyses and modelling results for the Vailly piezometer



Analyses and modelling results for the Vailly piezometer



Piézomètre
Profondeur : 54 m

BDLisa
Calcaires Jurassiques 
Entre Ouche Et Vingeanne - 139AO05

04398X0002/SONDAG - Bourberain - mesures depuis 1974 

https://ades.eaufrance.fr/Fiche/PtEau?Code=04398X0002/SONDAG#mesures_graphiques

Comparaison sous ESTHER :

ESTHER_SPLI_6mois_piézoBourberain 
et

ECAD_IPS_6mois_stationDIJON

Analyses and modelling results for the Bourberain piezometer



Analyses and modelling results for the Bourberain piezometer



06987A0186/S - La Doua (Villeurbanne) - mesures depuis 1968

https://ades.eaufrance.fr/Fiche/PtEau?Code=06987A0186/S#mesures_graphiques

5 km

Comparaison sous ESTHER :

ESTHER_SPLI_6mois_piézoVilleurbanne
et

ECAD_IPS_6mois_météoLYON-BRON

Analyses and modelling results for the La Doua piezometer



08662X0408/F - Fin de Route(Saint-Marcel-les-Sauzet) - mesures depuis 2005

https://ades.eaufrance.fr/Fiche/PtEau?Code=08662X0408/F#mesures_graphiques

Aucune coupe disponible

BDLisa
Alluvions Du Roubion Et Du Jabron
712BE24 

5 km

Comparaison sous ESTHER :

Saint-Marcel-les-Sauzet_08662X0408_mois
et 

ECAD_IPS_6mois_stationMONTELIMAR

Analyses and modelling results for the Saint-Marcel piezometer



02296X0038/P1 - DOMMARTIN-LES-TOUL - mesures depuis 2002 

https://ades.eaufrance.fr/Fiche/PtEau?Code=02296X0038/P1#mesures_graphiques

PUITS FILTRANT 1- ANCIENNE AEP
Profondeur atteinte : 8.3 m

Aucune coupe disponible

BDLisa
Alluvions actuelles à anciennes
de la Moselle sur calcaire du Dogger
952AC17 5 km

Comparaison sous ESTHER :

ESTHER_SPLI_6mois_piézoDommartin 
et

ECAD_IPS_6mois_stationNANCY

Analyses and modelling results for the Dommartin piezometer



02296X0038/P1 - DOMMARTIN-LES-TOUL
ADES et idée de seuils sécheresse définis avec ESTHER

Analyses and modelling results for the Dommartin piezometer



PUITS
Profondeur atteinte : 7.75 m
Aucune coupe disponible

BSH : nappe du calcaire Oolithe à Wirwignes, secteur du Boulonnais, Jurassique supérieur

BDLisa - 135AA15
Calcaire De Brecquerecque, Caillasses D'Hesdigneul, Oolithe D'Hesdin-L'Abbé,
Grès De Brunembert Du Boulonnais Dans Le Bassin Artois-Picardie

00104X0054/P1 - Puits de la Ferme Delattre (Wirwignes) - mesures depuis 1967 

https://ades.eaufrance.fr/Fiche/PtEau?Code=00104X0054/P1#mesures_graphiques

15 km

Comparaison sous ESTHER :

ESTHER_SPLI_6mois_piézoWirwignes 
et

ECAD_IPS_6mois_stationABBEVILLE

Analyses and modelling results for the Wirwignes piezometer



00104X0054/P1 - Wirwignes
ADES et idée des seuils sécheresse 

(Arrêté-cadre sécheresse du bassin Artois-Picardie du 25 juillet 2018 + IPS ADES novembre 2019)

00104X0054/P1 - Wirwignes
ADES et idée des seuils crue 
(IPS ADES novembre 2019)

Analyses and modelling results for the Wirwignes piezometer

(High flows are also forecasted as groundwater may influence flood processes for that case study)



https://www.epa.ie/hydronet/#IE_WE_G_0002_1200_0013

Carbonifère Dinantien, 
calcaires karstifiés

Côte sol 22.529 m NGF
Profondeur > 21 m

Début 22/10/2003

https://www.epa.ie/hydronet/#Groundwater

Comparaison sous ESTHER :

ESTHER_SPLI_6mois_piézoKilliny
et

ECAD_IPS_6mois_stationSHANNON

Analyses and modelling results for the Killiny piezometer



IE_WE_G_0002_1200_0013 - KILLINY
piézométrie et idée de seuils sécheresse définis avec ESTHER

Analyses and modelling results for the Killiny piezometer



https://apps.sgu.se/kartvisare/kartvisare-grundvattenniva.html

Silurien - calcaires, 
schistes, grès

Côte sol 21.58 m NGF
Profondeur 5.1 m

Début 15/11/1986
https://apps.sgu.se/kartvisare/kartvisare-grundvattenniva.html

Comparaison sous ESTHER :

ESTHER_SPLI_6mois_piézoHemse
et

ECAD_IPS_6mois_stationHEMSE

Analyses and modelling results for the Hemse piezometer



8_4 - Hemse_4
piézométrie et idée de seuils sécheresse définis avec ESTHER

Analyses and modelling results for the Hemse piezometer



Crétacé Supérieur -
moraines, calcaires, 
craie

Côte sol 29.33 m NGF
Profondeur 52 m

Début 11/05/1983

https://data.geus.dk/JupiterWWW/allepejlinger.jsp?borid=11064
https://data.geus.dk/geusmap/?mapname=jupiter#baslay=baseMapDa&optlay=&extent=151228.9970800496,6045951.22244

6646,950894.1822652348,6427874.646829362&layers=jupiter_pejlinger

Comparaison sous ESTHER :

ESTHER_SPLI_6mois_piézoThisted
et

ECAD_IPS_6mois_stationVESTERVIG

Analyses and modelling results for the Thisted piezometer



22.368 Hindingvej 27 - Thisted
piézométrie et idée de seuils sécheresse définis avec ESTHER

Analyses and modelling results for the Thisted piezometer



http://www.umwelt.sachsen.de/umwelt/infosysteme/ida/p/diagramm_w?mkz=46549384
MKZ Messstellenname Messstellenart Ostwert Nordwert Messpunkthöhe Filteroberkante Filterunterkante Ausbausohle Geländehöhe Höhensystem Beobachtungsbeginn Beobachtungsende Analysenbeginn Analysenende Datenlogger Grundwasserkörper Kreis Datenart WRRL
46549384 Neudorf, B 384/68 Grundwasserbeobachtungsrohr 477894 5686503 146.5 139.76 138.76 137.76 145.76 NHN16 1985 J SP 2-1 Landkreis Görlitz WS J

MKZ Messstellenname Ostwert Nordwert Messzeitpunkt Wert Einheit Wert in cm unter Gelände Höhensystem HW MHW MW MNW NW Abflussjahr
46549384 Neudorf, B 384/68 477894 5686503 01.11.1985 143.04 m Höhensystem 272 NHN16 143.86 143.46 143.21 142.95 142.71 1986

Paléozoique-
Précambrien, roches 
métamorphiques

Côte sol 145.76 m NGF
Profondeur 8 m

https://www.umwelt.sachsen.de/umwelt/infosysteme/ida/pages/map/default/index.xhtml

Situation au 25/11/2019

Comparaison sous ESTHER :

ESTHER_SPLI_6mois_piézoNeudorf
et

ECAD_IPS_6mois_stationMUECKA

Analyses and modelling results for the Neudorf piezometer



46549384 - NEUDORF, B 384/68 
piézométrie et idée de seuils sécheresse définis avec ESTHER

Analyses and modelling results for the Neudorf piezometer



Crétacé-Jurassique

Côte sol 545.01 m NGF
Profondeur 40 m

https://sig.mapama.gob.es/93/ClienteWS/redes-
seguimiento/Default.aspx?nombre=PIEZO_GRAFICA&claves=DGAGUA.PIEZOMETROS.PIE_NUMPIE&valores=2386

Cod. Piezómetro Profundidad obra (m) Provincia Municipio Fecha Nivel Nº Medidas Nombre Demarcación Hidrográfica Masa de agua subterránea sobre la que se sitúa el piezómetro Unidad Hidrogeológica Cota terreno (msnm) Profundidad (m) Coordenada X (ETRS89) Coordenada Y (ETRS89) Descripción Fecha Nivel Cota
05.32.008 40 Granada Chauchina 20-07-1988 345 CHG Romilla - P4 (SGOP-4) GUADALQUIVIR situado fuera del perímetro de alguna masa de agua subterránea Depre. Granada 545 40 430.040 4.117.570 CHG Romilla - P4 (SGOP-4) 20/07/1988 6.27 538.7

OBJECTID NUMPIE NOMBRE DESCRI PROF UTM_X_ET UTM_Y_ET PIE_Z NOM_MASA DH_NOM PROV_NOM MUN_NOM UNI_NOMUNI
95039 2386 05.32.008 CHG Romilla - P4 40.00 430040 4117570 545.24 DEPRESIËN DE GRANADA Guadalquivir Granada Chauchina Depre. Granada

https://sig.mapama.gob.es/redes-seguimiento/visor.html?herramienta=Piezometros

Comparaison sous ESTHER :

Piézo_mois_Chauchina
et

ECAD_IPS_6mois_stationGRANADA

Analyses and modelling results for the Chauchina piezometer



Analyses and modelling results for the Chauchina piezometer
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Annex B: List of reviewed web services providing 
access to monitored piezometric data (last accessed 
– 30 june 2020)

Belgium
https://iwaponline.com/jh/article-pdf/10/4/317/386301/317.pdf

Danemark
https://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-
jupiter/
https://data.geus.dk/geusmap/ows/help/?mapname=jupiter&epsg=25832
https://www.geus.dk/vandressourcer/overvaagningsprogrammer/grundvandsovervaagning/
https://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-
jupiter/adgang-til-data/
https://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-
jupiter/webservices-for-udviklere/
https://data.geus.dk/JupiterWWW/index.jsp#dgunr=&kommunenr=&minpostal=&maxpostal=&reg
ion=&sted=&anvendelseskoder=M&formaalskoder=&order=5&ascent=false
https://data.geus.dk/JupiterWWW/borerapport.jsp?dgunr=34.1706
https://data.geus.dk/JupiterWWW/borerapport.jsp?dgunr=5.939

Finland
http://v-web002.deltares.nl/fewsprojectviewer/projectviewer/

France
http://hubeau.eaufrance.fr/page/api-piezometrie

Germany
http://www.hochwasser-
rlp.de/karte/einzelpegel/flussgebiet/rhein/teilgebiet/oberrhein/pegel/WORMS
https://www.noe.gv.at/wasserstand/#/de/Messstellen
https://www.noe.gv.at/wasserstand/#/en/Static/links/0
https://www.noe.gv.at/wasserstand/#/en/Static/erlauterungen/4
http://www.umwelt.sachsen.de/umwelt/wasser/6103.htm
http://www.umwelt.sachsen.de/umwelt/infosysteme/ida/p/diagramm_w?mkz=51480001
http://www.umwelt.sachsen.de/umwelt/infosysteme/ida/p/diagramm_w?mkz=46549384
https://www.umwelt.sachsen.de/umwelt/infosysteme/ida/pages/map/default/index.xhtml
http://www.wasserdaten.niedersachsen.de/cadenza/
http://www.wasserdaten.niedersachsen.de/cadenza/pages/selector/index.xhtml

Ireland
http://www.epa.ie/water/wm/groundwater/level/
https://www.epa.ie/hydronet/#Groundwater

https://www.epa.ie/hydronet/#Groundwater
http://www.epa.ie/water/wm/groundwater/level/
http://www.wasserdaten.niedersachsen.de/cadenza/pages/selector/index.xhtml
http://www.wasserdaten.niedersachsen.de/cadenza/
https://www.umwelt.sachsen.de/umwelt/infosysteme/ida/pages/map/default/index.xhtml
http://www.umwelt.sachsen.de/umwelt/infosysteme/ida/p/diagramm_w?mkz=46549384
http://www.umwelt.sachsen.de/umwelt/infosysteme/ida/p/diagramm_w?mkz=51480001
http://www.umwelt.sachsen.de/umwelt/wasser/6103.htm
https://www.noe.gv.at/wasserstand/#/en/Static/erlauterungen/4
https://www.noe.gv.at/wasserstand/#/en/Static/links/0
https://www.noe.gv.at/wasserstand/#/de/Messstellen
http://www.hochwasser-rlp.de/karte/einzelpegel/flussgebiet/rhein/teilgebiet/oberrhein/pegel/WORMS
http://www.hochwasser-rlp.de/karte/einzelpegel/flussgebiet/rhein/teilgebiet/oberrhein/pegel/WORMS
http://hubeau.eaufrance.fr/page/api-piezometrie
http://v-web002.deltares.nl/fewsprojectviewer/projectviewer/
https://data.geus.dk/JupiterWWW/borerapport.jsp?dgunr=5.939
https://data.geus.dk/JupiterWWW/borerapport.jsp?dgunr=34.1706
https://data.geus.dk/JupiterWWW/index.jsp#dgunr=&kommunenr=&minpostal=&maxpostal=&region=&sted=&anvendelseskoder=M&formaalskoder=&order=5&ascent=false
https://data.geus.dk/JupiterWWW/index.jsp#dgunr=&kommunenr=&minpostal=&maxpostal=&region=&sted=&anvendelseskoder=M&formaalskoder=&order=5&ascent=false
https://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-jupiter/webservices-for-udviklere/
https://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-jupiter/webservices-for-udviklere/
https://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-jupiter/adgang-til-data/
https://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-jupiter/adgang-til-data/
https://www.geus.dk/vandressourcer/overvaagningsprogrammer/grundvandsovervaagning/
https://data.geus.dk/geusmap/ows/help/?mapname=jupiter&epsg=25832
https://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-jupiter/
https://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-jupiter/
https://iwaponline.com/jh/article-pdf/10/4/317/386301/317.pdf
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https://www.epa.ie/hydronet/#IE_SH_G_0039_2500_0002
https://www.epa.ie/hydronet/#Flow
https://www.met.ie/climate/available-data/historical-data

Italy
https://www.arpae.it/dettaglio_generale.asp?id=679&idlivello=247
https://geo.regione.emilia-romagna.it/cartografia_sgss/user/viewer.jsp?service=ewater
http://geo.regione.emilia-
romagna.it/eWaterDataDistributionSgss/EwaterDetailForm?dataType=well&id=MO03-01&lang=it

Luxembourg
https://eau.public.lu/eaux_souterraines/reseau_surveillance/index.html

Norway
https://www.ngu.no/en/topic/api-and-wms-services
http://geo.ngu.no/kart/granada_mobil/

Spain
https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/red-piezometrica.aspx
https://sig.mapama.gob.es/redes-seguimiento/index.html?herramienta=Piezometros
https://sig.mapama.gob.es/93/ClienteWS/redes-
seguimiento/Default.aspx?nombre=PIEZOMETROS&claves=DGAGUA.PIEZOMETROS.PIE_N
UMPIE&valores=1671

Sweden
http://resource.sgu.se/service/wms/130/brunnar
http://resource.sgu.se/service/wms/130/miljoovervakning_grundvatten
https://apps.sgu.se/kartvisare/kartvisare-grundvattenniva.html
http://vattenweb.smhi.se/station/
https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,proxy=wpt-
a,tab=vader,param=t
https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,proxy=wpt-
a,tab=vader,param=p_day

The Netherlands
https://www.dinoloket.nl/en/nieuws/dive-dutch-groundwater-our-interactive-tools
https://www.dinoloket.nl/en/subsurface-data
https://www.dinoloket.nl/aanleveren-grondwatermonitoring-gegevens
https://www.dinoloket.nl/sites/default/files/2019-01/Voorbeeldbestand.txt
https://www.dinoloket.nl/sites/default/files/file/dinoloket_nitg_formaat_20161220.pdf

United Kingdom
http://www.hydoutuk.net/
http://www.hydoutuk.net/archive/2019/february-2019/further-information-february-2019/
http://v-web002.deltares.nl/fewsprojectviewer/projectviewer/projectdata/1460448322-NGMS-
folder_concept3.pdf
https://www.bgs.ac.uk/discoverymetadata/13480430.html
https://www.bgs.ac.uk/research/groundwater/datainfo/levels/levels_data.html
https://www.bgs.ac.uk/research/groundwater/datainfo/levels/home.html
http://mapapps.bgs.ac.uk/groundwatertimeline/home.html#

http://mapapps.bgs.ac.uk/groundwatertimeline/home.html
https://www.bgs.ac.uk/research/groundwater/datainfo/levels/home.html
https://www.bgs.ac.uk/research/groundwater/datainfo/levels/levels_data.html
https://www.bgs.ac.uk/discoverymetadata/13480430.html
http://v-web002.deltares.nl/fewsprojectviewer/projectviewer/projectdata/1460448322-NGMS-folder_concept3.pdf
http://v-web002.deltares.nl/fewsprojectviewer/projectviewer/projectdata/1460448322-NGMS-folder_concept3.pdf
http://www.hydoutuk.net/archive/2019/february-2019/further-information-february-2019/
http://www.hydoutuk.net/
https://www.dinoloket.nl/sites/default/files/file/dinoloket_nitg_formaat_20161220.pdf
https://www.dinoloket.nl/sites/default/files/2019-01/Voorbeeldbestand.txt
https://www.dinoloket.nl/aanleveren-grondwatermonitoring-gegevens
https://www.dinoloket.nl/en/subsurface-data
https://www.dinoloket.nl/en/nieuws/dive-dutch-groundwater-our-interactive-tools
https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,proxy=wpt-a,tab=vader,param=p_day
https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,proxy=wpt-a,tab=vader,param=p_day
https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,proxy=wpt-a,tab=vader,param=t
https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,proxy=wpt-a,tab=vader,param=t
http://vattenweb.smhi.se/station/
https://apps.sgu.se/kartvisare/kartvisare-grundvattenniva.html
http://resource.sgu.se/service/wms/130/miljoovervakning_grundvatten
http://resource.sgu.se/service/wms/130/brunnar
https://sig.mapama.gob.es/93/ClienteWS/redes-seguimiento/Default.aspx?nombre=PIEZOMETROS&claves=DGAGUA.PIEZOMETROS.PIE_NUMPIE&valores=1671
https://sig.mapama.gob.es/93/ClienteWS/redes-seguimiento/Default.aspx?nombre=PIEZOMETROS&claves=DGAGUA.PIEZOMETROS.PIE_NUMPIE&valores=1671
https://sig.mapama.gob.es/93/ClienteWS/redes-seguimiento/Default.aspx?nombre=PIEZOMETROS&claves=DGAGUA.PIEZOMETROS.PIE_NUMPIE&valores=1671
https://sig.mapama.gob.es/redes-seguimiento/index.html?herramienta=Piezometros
https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/red-piezometrica.aspx
http://geo.ngu.no/kart/granada_mobil/
https://www.ngu.no/en/topic/api-and-wms-services
https://eau.public.lu/eaux_souterraines/reseau_surveillance/index.html
http://geo.regione.emilia-romagna.it/eWaterDataDistributionSgss/EwaterDetailForm?dataType=well&id=MO03-01&lang=it
http://geo.regione.emilia-romagna.it/eWaterDataDistributionSgss/EwaterDetailForm?dataType=well&id=MO03-01&lang=it
https://geo.regione.emilia-romagna.it/cartografia_sgss/user/viewer.jsp?service=ewater
https://www.arpae.it/dettaglio_generale.asp?id=679&idlivello=247
https://www.met.ie/climate/available-data/historical-data
https://www.epa.ie/hydronet/#Flow
https://www.epa.ie/hydronet/#IE_SH_G_0039_2500_0002
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Introduction
The groundwater level (GWL), defined as the altitude of the water table into an aquifer reservoir, roughly 
results from the budget of different fluxes. Provided there is no infiltration from rivers or surface water 
bodies or underground inflow from neighboring aquifers, the input term is the infiltration of part of the 
effective precipitation (the fraction of snow and/or rain nor consumed by vegetation, neither stored in 
the soil). The output term of the budget is the drainage through springs and rivers, and uptakes from 
wells and boreholes. The stock variation dynamic is a function depending both on the ratio between 
input and output, and on the aquifer properties (reservoir size, porosity, etc.). This dynamic is usually 
well reproduced using lumped models, stochastic models, or deterministic numerical models.

Nevertheless, there in an increased interest for using artificial intelligence (AI), and especially machine 
learning approaches, as a new way for the modelling of GWL (particularly when data on aquifer 
properties is scarce). For AI modelling implementation, two key steps must be completed: i) the selection 
of contributing variables to the target signal (here GWL), by assessing how strong is the dependence of 
the target to an individual input signal, and ii) the feature engineering i.e. the transformation of a an 
observed signal (e.g. rain) into a more significant signal for the target to simulate (e.g. : daily rain, 
anomaly of rain compared to the normal, etc…).

In the framework of the INDECIS project, meteorological data sets and indices have been computed. 
Building on this data, gridded effective precipitation daily time series have been computed at the France 
scale on a regular grid of 0.25°x0.25° (see INDECIS Deliverable 6.4).

In France, GWL is actively monitored in springs, wells and boreholes at about 6k different places, and 16k 
additional dataset are available, with at least one measurement of the GW depth, spread over the entire 
territory, and at different depths. This monitoring has been designed to include the different types of 
existing aquifers, exploited or not for the supply of different sectors (drinking water, agriculture, 
industrial uses). This monitoring is then heterogeneous in quality and resolution depending on the 
importance of the groundwater resource for the water users. Aquifers used for drinking water supply are 
usually monitored with a high resolution and quality. At the opposite, wells used for irrigation are usually 
found with approximate location, poor temporal resolution, and short time series lengths.

Baulon et. al. (2021), showed that, at the scale of France, only 254 GWL time series out of the total 
monitored wells and boreholes, are longer than 30 years. These data present an almost continuous 
signal (few proportion of ‘no data’), and temporal variations exhibiting contrasted behaviors (annual 
variation, seasonal variation, interannual variation, wide/narrow amplitude, etc.).

Combining the two datasets is of interest to better understand the contribution of rain to the GWL time 
evolution. The implementation, calibration, validation and analysis of the results of lumped, stochastic or 
deterministic models may be computationally costly at the national scale. AI-like models represent an
interesting alternative in that matter. This work reports the progress done in that direction, exploring the 
two first steps described above: variable selection and feature engineering.

In order to explore the dependence of the GWL to the effective precipitation at the vertical of the 
boreholes, and in the close vicinity, a methodological framework has been designed to assess two main 
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parameters of feature engineering: the cumulating depth, and the delay. First applied using effective 
precipitation, the framework can easily be adapted to other climate-based indices available in the Indecis 
data portal (such as SPI3-6-12, SPEI3-6-12).

Material and methods
This section describes the data that were used and the methodology associated to the study

Data
Effective precipitation
The effective precipitation computed in the INDECIS WP6 is a gridded dataset, available over Europe.
This dataset provide time series of effective precipitation from 1950 to 2019 at cell 0.25°x0.25° grid cells
at a daily time step. The data used for the effective precipitation modelling was downloaded from E-OBS 
web portal (https://www.ecad.eu/download/ensembles/download.php) for precipitation and 
temperature data and from the Indices INDECIS web portal (http://www.indecis.eu/indices.php) for 
Potential Evapotranspiration. More information on the data and computing method can be found in the 
WP6 D6.4 report.

Groundwater levels observations
In France, GWL data are freely available through the Hub’eau API (https://hubeau.eaufrance.fr/). Two 
different operators were downloaded:

- the stations description: https://hubeau.eaufrance.fr/api/v1/niveaux_nappes/stations

- the data measurements: https://hubeau.eaufrance.fr/api/v1/niveaux_nappes/chroniques

These operators are mirroring the data stored in the French national database ADES
(www.ades.eaufrance.fr), with no prior treatment or modifications.

254 time series have been selected on the basis of criteria such as: continuity of the signal, no to little 
gaps and different variation in time. Details on this process can be found in Baulon et al. (2021). 

Methods
GWL interpolation, normalization
Nowadays, the temporal resolution of the GWL data is daily but, for earlier periods, the frequency was 
frequently weekly and even monthly. Nevertheless, the selected time series show regular variations 
since at least 20 years, with no to very little effect of pumping or other man-based influence. 

Interpolation has been carried to fill potential gaps, based on the implementation of the ‘time 
interpolation method’ of the python library pandas1, which is designed for time-index time series, 

1 https://github.com/pandas-dev/pandas/blob/v1.1.5/pandas/core/generic.py#L6602-L6894

https://github.com/pandas-dev/pandas/blob/v1.1.5/pandas/core/generic.py#L6602-L6894
http://www.ades.eaufrance.fr/
https://hubeau.eaufrance.fr/api/v1/niveaux_nappes/chroniques
https://hubeau.eaufrance.fr/api/v1/niveaux_nappes/stations
https://hubeau.eaufrance.fr/
http://www.indecis.eu/indices.php
https://www.ecad.eu/download/ensembles/download.php
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possibly unevenly sampled. A second transformation was performed in order to normalize the time 
series. The normalization is made using equation 1.

Equation 1

With :

Yt,norm: normalized value at time t

Yt: bulk value at time t

: arithmetic mean of the time series

Ymax, Ymin : maximum and minimum value of the time series.

Effective precipitation
Effective precipitation has been considered using three different formulations:

- as daily data ;
- as cumulated data ;
- as delayed signal (both for daily data and cumulated data).

The three different time series have been normalized using Equation 1 before further computing. 

The selection of the effective precipitation cell corresponding to a given GWL time series location was 
based on the following coordinates comparison:

Xcmin<XGWL<Xcmax and Ycmin<YGWL<Ycmax

Where XGWL,YGWL are the coordinates of the piezometer and Xcmin,Xcmax, Ycmin, Ycmax are the coordinates of 
the corresponding effective precipitation cell. Once the latter located, the 8 cells to it are also selected.

Cumulated effective precipitation

The cumulated effective precipitation is performed using a rolling sum over the whole time series, with a 
given depth for the period over which the sum is computed (equation 2). The rolling sum calculated at 
time t with the given depth i is attributed to the time index t.

Equation 2

The period depth (i in Equation 2, in days) for the sum can vary in an interval given by the user. After 
several trial and errors, the interval for the period depth parameter of the rolling sum has been set to 
[5-545[ days, with a time increment step of 15 days, i.e. 36 different depths, the longest depth extending 
over about a year and a half.
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Delayed effective precipitation

Taken the two formulations described above (daily effective precipitation, cumulated effective 
precipitation), a variable time delay has been applied. This parameter will be used to assess the potential 
percolation delay of infiltrated effective precipitation to reach the groundwater table. The delayed time 
series were calculated with respect to equation 3, where i represents the delay value chosen by the user.

Equation 3

Values for the delay have been set up as a function of the depth parameter for the cumulated effective 
precipitation computation. The maximum delay value is three times greater the depth value, from which 
intermediate delay values are computed (every 1/6 of the maximum delay). For example, if the 
cumulated effective precipitation have been calculated over 30 days, new time series have been set up, 
for cumulated efficient precipitation delayed by 15, 30, 45, 60, 75, 90 days (Illustration 1). 

Illustration 1: Example of the time series used to assess the transfer dynamic between effective precipitation and groundwater 
levels. From top to bottom: groundwater level at piezometer 00271X0002/P2 ; effective precipitation cumulated over 185 days 
and delayed using variable time periods (0,31,62,…,527 days), effective precipitation cumulated over 365 days and delayed by 
0,61,122,…,1037 days.

Comparison of the GWL and effective precipitation signal
To provide an overview on the parameters one should use to find the best link between effective 
precipitation and GWL, the Pearson correlation coefficient2 which “measures the linear relationship 
between two datasets was computed. Like other correlation coefficients, this one varies between -1 and 
+1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive 
correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y 
decreases”.

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html
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The correlation has been calculated for all the 6165 pairs of GWL and effective precipitation related 
signal (illustration 2).

At corresponding effective precipitation cell For each adjacent cell

Raw data Cumulative
sum

Cumulative sum 
+ delay

Raw 
data

Cumulative
sum

Cumulative sum 
+ delay

GWL 1 36 36x18=648 1 36 36x18=648

Illustration 2: Detail of the number of paired dataset for which the correlation has been computed, for each piezometer

The parameters (depth of the rolling sum, delay and the position of the cell (vertical to the piezometer or 
in the vicinity)) corresponding to the best correlation among the 6165 calculated Pearson coefficients is 
stored for further processing. 

Illustration 3: Example of comparison between effective precipitation (Y axis, normalized, here cumulated over 185 days), 
delayed effective precipitation (here delays varies from 111 days to 444 days) and GWL (normalized, Y axis). Shift represent the 

amount of days the Y signal is delayed, ‘corr’ represent the pearson coefficient.

Illustration 3 gives an example of the effect of the delay (named ‘shift’ in the figure) on the Pearson 
correlation coefficient calculated for an effective precipitation cumulated over 185 days and a GWL time 
series. In that particular case, best coefficient is found at delay= 0 day, with a value of 0.776. Iterating 
over the proposed range of depth for the cumulated depth, will lead to obtain, for each value of depth, 
the delay at which the correlation is maximum.

The same procedure is applied for each of the 8 adjacent cells of the effective precipitation grid, and 
stored for further processing.
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Results
The search for best fit between GWL and a signal based on effective precipitation has been carried out 
for the 254 selected piezometers and selected parameters (depth of rolling sum and delay). Information 
related to best correlation coefficient value and corresponding parameters is stored so as to be 
attributed either to the piezometer or to corresponding effective precipitation grid cell. Computation 
time is about 2.5 hours.

Illustration 4: Distribution of correlation coefficient (left) and delay values (right, Y axis in log scale) for the best correlation 
coefficient found.

Correlation coefficient values found at the end of the fitting procedure are generally high (illustration 4), 
with a majority of values above 0.7. There are very few values below 0.5, which represents a threshold 
under which no correlation is expected. The coefficient are always positive as only the maximum 
coefficient have been stored (a negative relationship between effective precipitation and GWL would not 
be physically explainable). Illustration 4 (right) shows that the most frequent situation is the best 
correlation is found with a 0 delay (no delay). The rest of the delay values are gathered around half a 
year (60-150 days) and then around a year (350-400 days). Few cases present delays greater than 1 year.

The distribution of the depth of rolling sum parameter associated with the best correlation coefficient 
(illustration 5) shows that most depth values range between 10 and 200 days. Few cases fall into the 
250-450 interval, the remaining cases showing depth values higher than 450 days peak of cases for the 
maximum parameter value. This last peak should be interpreted as the fact that the best correlation 
coefficient falls outside the chosen interval (i.e. for depth of rolling sum greater than 545 days) but 
increases with increasing depth of rolling sum. Under this assumption, the greater is the depth 
parameter, the greater is the correlation coefficient, even if the maximum coefficient has not been 
found. It has been found costly in computation time to extend the interval. This cases could be 
interpreted as the need to compute a rolling sum on a large amount of time (more than a year and a 
half) to explain the link to the hydraulic heads and concerns particularly aquifers with great inertia.
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Illustration 5: Distribution of the depth parameter for effective precipitation rolling sum.

Illustration 9 shows that the correlation coefficient values fitted not seem to strongly depend neither on 
the depth nor on the delay parameters. This is explained by the wide distribution of climate, soils, land 
use and aquifers characteristics included in the set of 254 selected piezometers across the French 
territory for this experiment. It is in turn possible to characterize this diversity by combining the 
proposed parameters in order to obtain a good enough correlation between effective precipitation and 
GWL, for most of the studied piezometers.

Illustration 6: Dependence of the correlation coefficient to the depth for rolling sum (left) or the delay (right) parameters. 
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When plotting those parameter along the French territory, no spatial pattern is found for the value of 
correlation coefficient (illustration 6). 

The spatial distribution of the depth parameter for cumulated effective precipitation seems to present 
more consistency in some regions (Erreur ! Source du renvoi introuvable.), particularly for depths 
inferior to 6 months (west, east  and south) and superior to a year (north, Seine basin).

The spatial distribution of the delay parameter (illustration 8) show values below one month all over the 
studied area, higher values being grouped in the north, in the Seine basin, same as for depth parameter 
(Erreur ! Source du renvoi introuvable.).

Illustration 7: Representation of the best correlation coefficient fitted for the 254 piezometers.
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Illustration 8: Values of the depth parameter for rolling sum (effective precipitation).
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Illustration 9: Delay parameter values over France.

The best correlation coefficient does not seem to be found for a particular cell over the considered 
piezometer (illustration 10). Cells centered on the piezometer are not the most frequent as cells located 
east, north-east, north-west, south-east and south-west can be more frequently selected for the best 
correlation (30 cases or more). Cells located to the south and west seem to be less frequent.

Illustration 10: Distribution of the geographical position of the cell for which the best correlation coefficient has been found
between effective precipitation and GWL.
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4. Conclusions
Based on a preselected set of 254 piezometers considered to be poorly influenced by pumping, the 
correlation between effective precipitation (and derived time series) and groundwater level has been 
explored over France. Results show that both signals can be rather well correlated (values above 0.6) 
depending on the way the effective precipitation is cumulated or delayed in time.

To obtain good relation between those two signals, a preprocessing of the effective precipitation has 
been carried out. Several parameters related to effective precipitation have been explored to maximize 
the correlation: the value of the depth for the rolling sum of effective precipitation, the value of the 
considered delay between effective precipitation and the GWL time series and the location of the cell of 
the effective precipitation grid compared to the considered piezometer position.

The goodness of the correlation does not appear to be dependent on one particular parameter and 
rather good correlation values have been found all over France. The depth parameter to compute the 
rolling sum for effective precipitation seems to be consistent across some regions and more clustered. 
The delay parameter appears to follow a similar behavior to that of the depth parameter. The highest 
values for both parameters are observed in the north of France (Seine basin). No particular importance 
seems to be linked to the considered effective precipitation cell location. 

A main result of this study is the new parameter set associated to the 254 piezometers: it is now possible 
to consider simulating GWL rather well of those piezometers presenting good correlation coefficient 
values using the effective precipitation grid computed based on E-OBS & INDECIS data. For each 
piezometer are provided, the effective precipitation grid cell coordinates, the depth of the rolling sum
and the delay to consider in order to obtain a first acceptable simulation using machine-learning
algorithms for GWL simulation at the French scale.
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RESUMEN

A pesar de que hoy en día la identificación y caracterización de sequías sigue siendo un proceso no estandarizado, lo más habitual 
es utilizar índices como el SPI o el SPEI entre otros. En este estudio se han analizado sequías históricas, no solo a través de los 
índices SPI y SPEI, sino también a través del índice SSMI, con series de humedad de suelo simuladas con el modelo hidrológico 
Variable Infiltration Capacity (VIC). El objetivo es mostrar la importancia de considerar la humedad del suelo en estudios de sequías. 
La ocurrencia de las sequías se ha determinado a través de los impactos económicos y agrícolas generados, y no únicamente a 
través del déficit hídrico. Se puede concluir que la humedad del suelo es un factor determinante en el estudio del impacto de la 
sequía en la producción de cereales y especies de grano grueso, pero no en las pérdidas económicas inducidas.

Palabras clave | sequía; España; SPI; SPEI; SSMI; VIC; humedad del suelo; impactos económicos; producción agrícola.

ABSTRACT

Nowadays, the identification and characterization of droughts is not yet a standardized process, in most cases, indices such as SPI 
or SPEI are used for this task. In this study, historical droughts are analyzed, not only through SPI and SPEI, but also using SSMI 
computed with soil moisture time series simulated with the VIC hydrological model. The main objective is to show the importance of 
considering soil moisture in the study of droughts. Drought occurrence was determined through the impacts of past droughts and not 
only through the deficit they produce at some point in the water balance process. We conclude that soil moisture is a key factor in 
the production of cereals and gross grain species but is not relevant for economic impacts.

Key words | drought; Spain; SPI; SPEI; SSMI; VIC; soil moisture; economic impacts; agricultural production. 
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INTRODUCCIÓN

Las sequías se caracterizan por un déficit hídrico, inicialmente desencadenado por la falta de precipitación. Es por ello que 
muchos estudios de sequías se han centrado en identificar y caracterizar estos eventos únicamente a través del déficit de precipitación 
o del balance de agua en el suelo (Vicente-Serrano et al., 2010). Sin embargo, la sequía es un proceso muy complejo en el que no 
solo la precipitación tiene importancia. El aumento de la temperatura del aire y el consecuente aumento de la evapotranspiración 
(King et al., 2015), los descensos en la humedad del suelo o los cambios en los usos del suelo tienen también mucha importancia y 
se han de tener en cuenta a la hora de realizar estudios de sequías (Van Loon et al., 2016).

Los estudios de sequías suelen realizarse haciendo uso del llamado método de umbrales, a través del cual se pueden obtener 
propiedades de esta como son la intensidad, la severidad, la frecuencia y la duración de un determinado evento. Dada una serie 
temporal de una variable de interés (precipitación, escorrentía, caudal), estas características se derivan del establecimiento de un 
umbral por debajo del cual se considera que se produce un déficit de la variable de estudio. Sin embargo, análisis de este tipo 
presentan varios problemas. Por un lado, el establecimiento de ese umbral sigue siendo una cuestión arbitraria, o al menos subjetiva, 
y depende del objetivo del estudio que se esté realizando (Fleig et al., 2006; Beyene et al., 2014). El umbral se define a través de 
un percentil, que suele variar entre un 70 y un 95. Es importante destacar que una mala elección del umbral puede llevar a una mala 
identificación y caracterización de los eventos producidos en un intervalo de tiempo (Van Loon et al., 2010; Sheffield y Wood, 
2011). Por otro lado, incorporar la dimensión espacial a los estudios de sequías no es una tarea sencilla y pese a ello es un aspecto 
crítico a la hora de definir correctamente una situación de sequía (Mishra y Singh, 2011).

Existen más de 150 índices en la literatura y cada uno de ellos es adecuado para representar uno o dos tipos de sequía 
�meteorológica, hidrológica, agrícola o socioeconómica�. Los índices son, en principio, dependientes de la zona de estudio. Por 
ejemplo, se ha visto que con el Índice Estandarizado de Precipitación-Evapotranspiración (SPEI � Standarized Precipitation-
Evapotranspiration Index) (Vicente-Serrano et al., 2010) se obtienen buenos resultados en la península ibérica entre otras zonas 
(Beguería et al., 2014). No obstante, hay ciertos índices que son muy utilizados globalmente. Por ejemplo, el Índice de Precipitación 
Estandarizado (SPI � Standarized Precipitation Index) (McKee et al., 1993) o el Índice de Severidad de Palmer (PDSI � Palmer 
Drought Severity Index) (Palmer, 1965) reproducen relativamente bien situaciones de sequía en diferentes partes del mundo 
encontrando, sin embargo, diferencias en los resultados obtenidos con unos y otros índices (Vicente-Serrano et al., 2012; Homdee 
et al., 2016; Liu, et al., 2018).

Una ventaja del estudio de sequías a través de índices es que permite cuantificar la severidad de las sequías. Tradicionalmente, 
sequías muy severas han producido grandes pérdidas de producción agrícola, tanto de regadío como de secano, que se han traducido 
en grandes pérdidas económicas (Lopez-Nicolas et al., 2017). La predicción estacional permite reducir el impacto de sequías menos 
severas mediante adaptaciones de los cultivos por parte de los agricultores. En el estudio realizado por Kim et al., 2019, queda 
reflejada la importante pérdida de rendimiento que generan las sequías en los cuatro productos más relevantes a nivel mundial: 
arroz, maíz, soja y trigo. De estas cuatro especies, únicamente dos son relevantes en España: el maíz y el trigo. En el año 2018, en 
España se regó un 22 % de la superficie total cultivada; en el caso del maíz, solo un 8.65 %. En el caso del trigo este valor desciende 
a un 0.77 % (ESYRCE, 2018). Estos datos reflejan la importancia que aún tiene el cultivo de secano en los principales cultivos en 
España y, por tanto, la sensibilidad frente a la sequía que tiene la producción agrícola.

A pesar del conocido impacto económico que generan las sequías, en España no se comenzó a asegurar la producción contra 
la sequía hasta el año 1980, lo que limita la duración de las series que podemos analizar. Además, es un riesgo muy complicado 
de asegurar, y cuantificar, debido a que no es un riesgo delimitado en tiempo y en espacio, haciendo que no se pueda establecer de 
forma precisa el inicio y final de los daños que esta provoca. En la actualidad, se aseguran cultivos extensivos de secano de tipo 
herbáceo (cebada, trigo, avena, arroz�), uva de vinificación, olivar, frutos secos, maíz y remolacha (Ollero Lara et al., 2018) y la 
cobertura del riesgo de sequía se considera junto con otras adversidades climáticas como heladas o granizo. Es importante destacar 
que las otras adversidades climáticas aseguradas provocan daños mucho más fácilmente delimitables en espacio y tiempo.

En este trabajo analizamos sequías históricas en la España peninsular utilizando los índices SPI, SPEI y SSMI (Standarized 
Soil Moisture Index) (Carrão et al., 2016), tanto a nivel agregado como distribuido en el espacio. Las sequías históricas se determinan 
a través de los impactos que estas generaron a nivel económico, estudiando la capacidad de cada índice de predecirlas. Se comparan 
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los resultados de los tres índices para identificar la sensibilidad de las sequías a la precipitación, temperatura y humedad del suelo. 
Para el estudio del SSMI, la humedad del suelo se obtuvo a través del modelo Variable Infiltration Capacity (VIC). Además, se ha 
estudiado la correlación entre los índices y las series temporales, con los impactos económicos y agrícolas generados por los eventos 
históricos identificados. En términos agrícolas, se ha estudiado el impacto de las sequías en los principales grupos de especies de 
cultivo en España.

Con este estudio se pretende establecer una metodología que ayude a la correcta definición y caracterización de las grandes 
sequías, a través del impacto real que generan en la producción agrícola y la economía de España, utilizando índices clásicos 
como medios de predicción. No se consideran las dinámicas agrícolas de adaptación de cultivo a las condiciones estacionales 
predichas -cambiando el cultivo típico por uno mejor adaptado a las condiciones climáticas predichas-, interesándonos únicamente 
por aquellas sequías no mitigables.

CASO DE ESTUDIO

Zona de estudio

El estudio se centra en la España peninsular. La precipitación en la península ibérica es muy variable en espacio y tiempo, 
debido a su diversidad climática y a su configuración orográfica. La precipitación decrece de norte a sur. En el norte, la precipitación 
media anual en el período de referencia 1981-2010 es de 1300 mm, mientras que en el centro y en el sur este valor se sitúa en unos 
550 mm. Además, España tiene una fuerte variación estacional de la precipitación media. En los meses de invierno, la precipitación 
media histórica ha sido de unos 75 mm al mes mientras que en verano estos valores descienden hasta los 20 mm. En cuanto a 
la temperatura, la distribución de las isotermas medias anuales reproduce bastante bien el mapa hipsométrico, con temperaturas 
medias más bajas en las zonas con mayor altitud. Además, también se observa una fuerte variación estacional en la temperatura, 
alcanzando los valores medios máximos en verano. Esta climatología lleva a que los períodos más secos correspondan a los meses 
de julio y agosto mientras que los más húmedos sean los correspondientes al período de noviembre a febrero. En la Figura 1.a y 
la Figura 1.b. se muestran los ciclos medios anuales en el período histórico de las variables usadas en este estudio: precipitación, 
temperatura, evapotranspiración potencial y humedad del suelo. Se puede observar que la humedad del suelo y la precipitación 
media del período histórico tienen una forma similar, pero con un retraso de 1 mes.

Figura 1 | Ciclos anuales medios de las variables climáticas de estudio en el período histórico de estudio.

Datos

En este estudio se han utilizado las series temporales de las variables climáticas observadas precipitación y temperatura de 
la base de datos Spain02 versión v5 (Herrera et al., 2012; Herrera et al., 2016). Estas series corresponden a datos a escala diaria en 
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un mallado de resolución espacial de 0.1 grados para el mallado regular y 0.11 grados para el mallado rotado. Para este estudio, 
se ha tomado la malla regular. Tanto la precipitación como la temperatura tienen una cobertura temporal desde 1951 hasta 2015.

Para forzar el modelo VIC se necesitan, además, otras variables climáticas adicionales como la radiación, cobertura de 
nieve y viento entre otras. Éstas han sido obtenidas del Research Data Archive que gestiona el National Center for Athmospheric 
Research (NCAR), que proporciona series temporales de reanálisis (CFSR – Climate Forecast System Reanalysis) de muchas 
variables climáticas. Estas series son series continuas de 32 años de duración cubriendo el período 1971 - 2011 y están disponibles a 
varias resoluciones espaciales. Para este estudio se ha utilizado la resolución espacial más fina disponible. Por otro lado, se necesita 
información litológica y edafológica, obtenida de la base de datos Global Soil Dataset for Earth system modeling (GSDE); datos 
de cobertura y usos del suelo, obtenidos a partir del Corine Land Cover (CLC) con resolución de 500 m; LAI (Leaf Area Index), 
procedente del Copernicus Global Land Service (CGLS) disponible a resolución temporal mensual y espacial de 0.01 grados; y 
albedo, obtenido de la base de datos Global Land Cover Facility, disponible a la misma escala espacio-temporal que el LAI. Todas 
las bases de datos han sido interpoladas a una resolución de 0.042° (~5 km), que es a la que se ha ejecutado el modelo VIC.

Con el objetivo de verificar la bondad de las series de humedad del suelo simuladas, se han empleado datos de humedad 
de suelo de satélite, concretamente, la versión 04.4 de la Iniciativa de Cambio Climático (CCI) de la Agencia Espacial Europea 
(ESA). Esta base de datos está basada en la versión 03.3 y está compuesta de tres productos: activo (a partir de datos de sensor 
radiométrico), pasivo (a partir de datos de radar) y combinado. La principal diferencia respecto a versiones anteriores es que el 
producto combinado se crea a partir de los datos de nivel 2 disponibles (humedad de suelo medida por sensores radar y humedad del 
suelo de radiómetro) y no como combinación de la parte activa y pasiva. Se proporcionan en una malla regular de 0.25°, cobertura 
global y período de 1978 hasta la actualidad. Está disponible a resolución diaria, 10-diaria y mensual. Además, la base de datos 
está compuesta por varios datos como son el porcentaje de humedad del suelo (%), la humedad del suelo volumétrica (m3 m�3) y la 
incertidumbre, en una capa de 2 a 5 cm de profundidad. En este estudio se ha utilizado el producto combinado a resolución temporal 
mensual. No se han considerado los productos activo y pasivo dado que el producto combinado representa adecuadamente los datos 
de humedad de suelo observada en ciertas áreas de la zona de estudio (González-Zamora et al., 2019).

Tabla 1 | Sequías históricas producidas en la España peninsular.

Inicio Final Datos agrícolas Datos económicos

1953 1954 No No

1964 1964 Sí No

1973 1974 Sí No

1980 1984 Sí No

1990 1995 Sí Sí

2005 2005 Sí Sí

2012 2012 Sí Sí

Para la identificación de sequías históricas se han utilizado principalmente dos fuentes de datos. Por un lado, se ha utilizado 
la base de datos Emergency Event Database (EM-DAT), que recoge información de distintas fuentes de datos (organizaciones no 
gubernamentales -ONG-, centros de investigación, aseguradoras, etc). Esta base de datos es global y aunque identifica algunas de 
las fuertes sequías que ha habido en España, la información es escasa. Por otro lado, se ha utilizado un estudio realizado por la 
Entidad Estatal de Seguros Agrarios (ENESA) (Ollero Lara et al., 2018) en el que se recoge información de secuencias de sequías 
históricas en España, así como períodos de sequía en la zona norte de la Península y lluviosos en el sur y viceversa. En la Tabla 1 
se muestran los eventos de sequía identificados en el período y la zona de estudio.

Además, en este estudio se recogen datos de parámetros económicos del Consorcio de Compensación de Seguros desde el 
año 1980. El Consorcio de Compensación de Seguros es un reasegurador obligatorio de carácter público al que todas las pólizas 
deben contribuir mediante un recargo como aportación a la reserva de estabilización del Consorcio. La reserva se crea con el objetivo 
de compensar las desviaciones desfavorables de la siniestralidad en cada año, en caso de que las haya. En la Figura 2 se muestran 
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las series temporales de las primas recibidas e indemnizaciones realizadas. En los años en los que las indemnizaciones superan las 
primas recibidas, se considera que ha habido una desviación de la siniestralidad desfavorable. En el estudio, se identifican los años 
1986, 1992, 1995, 1999, 2005 y 2012 como años con elevados daños por sequía coincidiendo con la existencia de picos sobre el 
comportamiento medio de la serie.

Figura 2 | Primas e indemnizaciones frente a daños agrícolas realizadas por el Consorcio de Compensación de Seguros (Fuente: ENESA).

Estos datos han sido utilizados para correlacionar el impacto económico producido por las sequías mostradas en la Tabla 1 
con los índices de sequía SPI, SPEI y SSMI. Asimismo, se ha estudiado la correlación entre los daños económicos producidos en los 
años de sequía con la producción agrícola en esos años. Los datos de producción agrícola han sido descargados de la Organización 
de las Naciones Unidas para la Alimentación y la Agricultura (FAOSTAT). Esta base de datos está formada por tres series de datos: 
producción agrícola (toneladas), área sembrada (hectáreas) y rendimiento (toneladas por hectárea) por tipo de especie y agregada a 
cada país desde 1961 a 2017. Además, ofrece la posibilidad de descargarse varias especies agrupadas. En este estudio, se ha hecho 
uso de la modalidad de bases de datos agrupadas en series temporales desde 1961 hasta 2015, límite impuesto por la base de datos 
de precipitación y temperatura.

METODOLOGÍA

Modelo hidrológico

El modelo hidrológico VIC es actualmente uno de los más aplicados a predicción de clima y cambios en la cobertura del 
suelo (Gayathri et al., 2015). Es un modelo semi-distribuído que se puede utilizar en dos modos, balance de agua y balance de 
energía. Utiliza precipitación, temperatura diaria y velocidad del viento entre otras variables, y permite la definición de muchos 
tipos de cobertura suelo. Es un modelo híbrido entre físico y conceptual ya que la infiltración, escorrentía, etc. están basadas en 
ecuaciones empíricas. A pesar de deficiencias tales como no reproducir interacciones entre el agua del subsuelo y la superficie, o 
no tener un mecanismo explícito para producir exceso de infiltración, el VIC es un modelo muy utilizado en estudios de sequías 
(Trambauer et al., 2014).

En este estudio, el modelo VIC se ha utilizado en su modalidad de balance de agua. Para ello, el modelo VIC resuelve la 
ecuación de continuidad de la masa en cada paso de tiempo entre los inputs (precipitación) y los outputs (evaporación, escorrentía 
y flujo base). La evaporación se calcula como suma de la evaporación del agua desde tres sistemas: cubierta vegetal, transpiración 
y suelo desnudo. Para el cálculo de la evapotranspiración potencial utiliza la fórmula de Penman-Monteith.

Las simulaciones se han realizado a escala diaria y a resolución espacial de ~0.05 grados (aproximadamente 5 km). La 
calibración del modelo VIC se suele realizar variando 6 parámetros, entre los que está la profundidad del suelo. En este caso, 
se ha asumido una profundidad constante en todas las celdas, sin realizar ninguna calibración para, posteriormente, realizar una 
corrección de las series obtenidas. A pesar de que la humedad de suelo de satélite mide la cantidad de agua en una profundidad 
de 5 a 10 cm, en este estudio se han simulado todas las celdas con una profundidad de la primera capa de 1 m. Se ha realizado así 



146 Sainz de la Maza y del Jesus | Análisis de sequías históricas a través de los impactos derivados Ingeniería del Agua  |  24.3  |  2020

2020, IWA Publishing, Editorial Universitat Politècnica de València, FFIA

debido a que la simulación con una capa superficial de 10 cm generaba mucho ruido sobre el comportamiento medio de las series 
simuladas. Con una profundidad de 1 m se ha conseguido simular ese comportamiento medio más suavizado y que se ha observado 
que reproduce mejor las condiciones medidas con satélite.

Índices de sequía

En el presente estudio se han utilizado los índices SPI, SPEI y SSMI a agregaciones espaciales de 1, 3, 6, 9 y 12 meses. Los 
tres índices poseen el mismo método de cálculo, el cual se basa en calcular cuánto se desvía cierta variable respecto de la media 
histórica. En el caso del SPI la variable usada es la precipitación (P), en el caso del SPEI es la diferencia entre la precipitación y 
la evapotranspiración potencial (P �ET0) y para el caso del SSMI se hace uso de la humedad del suelo (SM). El cálculo se realiza 
ajustando una función de densidad de probabilidad (FDP) a la serie histórica para después transformarla en una distribución normal 
de media cero y desviación uno, que es la que proporciona el valor de los índices. En el caso de los índices SPI y SSMI los autores 
recomiendan ajustar una FDP de tipo gamma (McKee et al., 1993; Carrão et al., 2016), mientras que en el caso del SPEI la función 
más adecuada es una log-logística (Vicente-Serrano et al., 2010). En el presente estudio se han realizado los cálculos siguiendo 
dichas recomendaciones.

Los tres índices de sequía se han calculado a partir de datos mensuales, es decir, se han obtenido 12 funciones de densidad 
de probabilidad, una por mes. Las variables precipitación y temperatura se proporcionan directamente como valores mensuales 
mientras que la humedad del suelo media mensual ha sido obtenida a partir de simulaciones diarias del modelo hidrológico VIC.
Para verificar la bondad de las series de humedad de suelo obtenidas, se han comparado con las series de humedad del suelo de 
satélite a través del coeficiente de correlación r de Pearson.

Puesto que el comportamiento hidrológico en España no es uniforme en todo el territorio, habiendo zonas más susceptibles 
de sufrir sequía, como es la zona sureste de la Península, la evaluación realizada está basada en un análisis distribuido de los índices 
SPI, SPEI y SSMI. Para el estudio comparativo entre los tres índices, se han calculado los valores medios mensuales para todo el 
período de estudio píxel a píxel y en cinco períodos de agregación a 1, 3, 6, 9 y 12 meses. Así, se han obtenido 15 índices por píxel 
de la malla de VIC cuya correlación se ha estudiado nuevamente a través del coeficiente de correlación r de Pearson. Este análisis se 
ha realizado tanto para toda la serie histórica como agrupada por meses, dando lugar a matrices de correlación de dimensión 15 x 15. 
El estudio distribuido permite, además, identificar qué áreas de la zona de estudio son más sensibles a cada variable (precipitación, 
temperatura y humedad del suelo) y a cada período de agregación.

Los datos económicos y agrícolas se tienen agregados espacialmente y en series anuales. Por tanto, este estudio permite 
identificar y cuantificar el impacto de las grandes sequías sufridas en todo el territorio español y no de sequías locales. Para poder 
cruzar los datos de índices con los económicos y agrícolas, se han calculado series anuales para las agregaciones de 1, 3, 6, 9 y 12 
meses para cada uno de los índices. Se parte, entonces, de series mensuales de los índices que se han de convertir en series anuales. 
Para cada año, se tienen 12 valores de cada índice (uno por mes) pero finalmente se han creado un total de 20 series temporales 
por año. Éstas, corresponden a los 12 valores de cada mes y a los estadísticos correspondientes a la media anual, mediana anual, 
máximo y mínimo anuales, y la media aritmética de 3 meses consecutivos (EFM, AMJ, JAS, OND) para ver posibles correlaciones 
estacionales. Se ha seguido esta metodología de cálculo para determinar si hay algún mes más relevante que el resto o si, por el 
contrario, el comportamiento económico y agrícola responde mejor a un comportamiento medio (media, mediana, estacional) o 
extremo (máximo o mínimo) de los índices. Todas las series agregadas han sido calculadas como la media aritmética de los valores 
en cada píxel y teniendo, en total, 20 series×5 agregaciones×3 índices (300 series temporales) para toda la península ibérica.

Análisis de impactos

Para cada una de las 20×5 series temporales de cada índice, se ha estudiado qué serie correlaciona mejor con la producción 
agrícola y los impactos económicos reportados. Esta correlación se ha obtenido a través del coeficiente r de Spearman, que mide la 
interdependencia de dos variables aleatorias cuya relación es monótona pero no necesariamente lineal. Cuando la relación es lineal, 
el coeficiente r de Spearman corresponde al coeficiente r de Pearson.
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Para realizar la correlación de los índices con datos económicos, se ha trabajado con las indemnizaciones porque estas 
representan el pago por cobertura del impacto directo de la sequía. Como la sequía es un riesgo que se asegura junto con otras 
inclemencias meteorológicas mucho más fácilmente delimitables en espacio y tiempo, se ha considerado que el comportamiento 
medio de la serie de indemnizaciones es un riesgo fácilmente predecible. Por tanto, la serie original ha sido tratada para obtener las 
desviaciones sobre el comportamiento medio eliminando, además, la tendencia creciente que se observa en la Figura 2. Así, la serie 
original ha sido estandarizada según la Ecuación (1),

(1)

donde Is se refiere a la indemnización estandarizada, yd son las desviaciones sobre el riesgo efectivo una vez eliminada la tendencia, 
µ es la media de las desviaciones y σ es la desviación estándar de las desviaciones. Esta estandarización lleva los términos económicos 
a valores en la misma escala que los índices de sequía.

Las series temporales de producción agrícola se tienen desde el año 1961, por tanto, se ha realizado un análisis semejante al 
económico, pero más extenso, con cada uno de los grupos de especies de producción agrícola. Es importante destacar que las series 
temporales de producción agrícola también poseen una tendencia positiva, en la mayor parte de los casos creciente, tal y como se 
observa en la Figura 3, donde se muestra un ejemplo para todos los grupos de especies.

Figura 3 | Evolución temporal de la producción agrícola en España desde 1961 hasta 2015.

Esta tendencia se ha considerado de índole no climática, debido a la innovación tecnológica producida en la agricultura. Los 
datos de producción se han comparado por un lado con los datos de desviaciones económicas, y con los índices de sequía por otro. A 
la hora de comparar la producción agrícola con los datos económicos, lo que permite saber qué especies provocan mayores pérdidas 
económicas, se han comparado las series originales únicamente extrayendo su tendencia. Sin embargo, a la hora de comparar 
con índices climáticos se ha utilizado el rendimiento de la producción, transformando también las series de rendimiento en series 
estandarizadas a través de la Ecuación (1). Para este caso, es el valor residual de producción una vez eliminada la tendencia, es la 
media de los valores residuales de producción y es la desviación estándar del valor residual de producción. Con esta estandarización, 
es posible comparar la producción entre diversas especies o grupos de especies.

La relación entre cada índice y las series de producción estandarizadas se ha evaluado también a través del coeficiente r de 
Spearman, dada la no linealidad en la relación entre índices de sequía y producción agrícola. Por último, para cada evento histórico, 
se ha observado qué valor de desviación económica y de producción hubo en esos años, estudiando el comportamiento de los 
índices en eventos de sequía.



148 Sainz de la Maza y del Jesus | Análisis de sequías históricas a través de los impactos derivados Ingeniería del Agua  |  24.3  |  2020

2020, IWA Publishing, Editorial Universitat Politècnica de València, FFIA

RESULTADOS

Índices de sequía

Correlación de índices de sequía

Las simulaciones realizadas con el modelo VIC están a una resolución de 0.05° mientras que la humedad del suelo de 
satélite se encuentra a 0.25°. Para poder realizar una comparativa entre las series obtenidas y las de satélite, se ha agregado la 
humedad de suelo simulada a la resolución de satélite calculando la media aritmética de los valores de humedad de suelo de las 
celdas de simulación integradas en cada celda de satélite. En la Figura 4 se muestran los mapas de correlación y sesgo de las series 
de humedad de suelo simuladas respecto a las observadas. Se muestran correlaciones r de Pearson positivas significativas con 
p<0.01. Se puede observar cómo las series tienen una alta correlación en la mayoría de la península ibérica (r >0.6 en más del 70 % 
del área de estudio) a excepción de la zona centro-este (r < 0.4 en aproximadamente un 7 % de las celdas). En cuanto al sesgo que 
poseen las series simuladas, se puede observar cómo en varias zonas de la Península las series poseen un sesgo no despreciable.

Figura 4 | Mapas de a) correlación y b) sesgo de las series de humedad del suelo simuladas frente a las de satélite.

Como ya se ha comentado, la profundidad a la que está medida la humedad del suelo de satélite es diferente a la de las series 
simuladas. Por tanto, se ha aplicado una corrección de sesgo a las series simuladas de tipo lineal según la Ecuación (2):

SMsc = (SMs � a) b+c (2)

Donde SMs es la humedad del suelo simulada, SMsc es la humedad del suelo corregida y a, b y c son factores correctores 
del sesgo y amplitud de la señal. Los coeficientes se ajustan minimizando el error medio cuadrático entre la serie observada y la 
corregida mediante un algoritmo genético. En la Figura 5 se muestra un ejemplo de una serie de humedad del suelo antes y después 
de ser corregidas en una celda al suroeste de la Península, donde encontramos los mayores valores de sesgo.

Figura 5 | Ejemplo de una serie de humedad de suelo de satélite vs. Simulada antes (izquierda) y después (derecha) de aplicar la corrección.
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Figura 6 | Matrices de correlación de los índices SPI con SPEI (panel a) y SPEI con SSMI (panel b).

En la Figura 6 se muestran los mapas de correlación para los índices SPI con SPEI y SPEI con SSMI. No se muestran los 
mapas de correlación de SPI con SSMI porque son muy similares a los obtenidos entre SPEI y SSMI, dada la alta correlación 
entre los índices SPI y SPEI. La escala gráfica de presentación es de 0 a 1, para observar las diferencias de forma más clara 
dada la alta correlación existente entre alguna pareja de índices. En concreto, se puede observar la alta correlación de los 
índices SPI y SPEI cuando están agregados la misma escala temporal (Panel a). La correlación es total en prácticamente toda la 
franja norte. Esto puede ser debido al elevado volumen de lluvias, haciendo que sea una zona donde la evaporación carece de 
importancia respecto a la precipitación. Esta correlación va disminuyendo a medida que se avanza hacia el sur de la Península 
y reflejando, por tanto, la importancia de la temperatura frente a la precipitación. También se observa una correlación alta entre 
diferentes escalas temporales de los mismos índices (Paneles a y b). Así, la correlación entre el SPI-9 con SPI-12 y SPEI-9 con 
SPEI-12 es superior a 0.8 en prácticamente toda la Península. Esta situación sugiere que el comportamiento de estos índices 
a escala temporal de 9 meses no se ve muy modificado por lo que ocurre los 3 meses siguientes, pudiendo así determinar el 
comportamiento medio de un año a través de los anteriores 9 meses.

En general, se observa una mejor correlación en toda la zona peninsular para escalas de agregación con 3 meses de 
diferencia, es decir, SSMI-1 con SPI-3 y SPEI-3, SSMI-3 con SPI-6 y SPEI-6, etc. Esto indica que, en general, la humedad del 
suelo de cierto mes está condicionada por lo que llovió los 3 meses anteriores, la humedad del suelo agregada a 3 meses está 
relacionada con lo que llovió en los 6 meses anteriores, etc. Para ciertas localizaciones en la zona centro y sur de España, la 
humedad del suelo también se ve condicionada por la temperatura que hubo. Además, es notable la baja correlación existente 
entre el índice SPEI-1 con las agregaciones 3, 6, 9 y 12 del índice SSMI, indicativo de que la información de precipitación y 
temperatura de un mes no determina la humedad del suelo de los 3, 6, 9 o 12 meses anteriores. No obstante, para la misma escala 
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de agregación temporal, la correlación entre los índices SSMI con SPI y SPEI es progresivamente creciente cuanto mayor es la 
agregación temporal.

Por último, cabe destacar la alta correlación entre el índice SSMI a diferentes agregaciones temporales. Encontramos una 
fuerte correlación entre los índices SSMI-6 con SSMI-9 y SSMI-9 con SSMI-12, derivando de ella que la humedad media de una 
ventana temporal de 6 y 9 meses no se va a ver muy modificada por los 3 meses siguientes, pudiendo determinar la humedad 
media del suelo de un año completo a partir de los 9 meses anteriores. De hecho, se puede apreciar cómo los mapas de SPEI-12 
correlacionan de forma prácticamente igual con los mapas de SSMI-9 y SSMI-12. Una excepción a este comportamiento se puede 
encontrar en la zona norte, donde se observa que la correlación es más baja que en la zona centro o sur de España. Se encuentra que 
esta situación es la contraria a lo que ocurría con los mapas de correlación de los índices SPI con SPEI indicando que, en este caso, 
la humedad del suelo en la zona norte adquiere importancia respecto a las variables precipitación y temperatura.

Agregación espacial

En la Figura 7 se muestran 12 de las 20 series temporales estudiadas para los índices SPEI y SSMI. Nuevamente el índice 
SPI no se muestra porque, como era de esperar tras observar la alta correlación de los índices SPI y SPEI en su forma distribuida, 
en su forma agregada son muy similares con ligeros cambios en la intensidad de los índices. Para cada índice, se tiene una serie 
histórica anual (eje de ordenadas) correspondiente a la agregación de cada índice en cada uno de los meses (eje de abscisas), 
generándose estas 12 series anuales de eneros, febreros, marzos, etc. Se puede observar cómo, a medida que la escala de agregación 
aumenta, se van reconociendo fácilmente qué años fueron secos y qué años fueron húmedos. Además, para años secos, como 
por ejemplo el año 2005, se observa ese retraso de 3 meses del SSMI respecto a los índices SPI y SPEI, fundamentalmente para 
agregaciones a partir de 6 meses.

a)

b)

Figura 7 | Series de los índices de sequía SPEI (panel a) y SSMI (panel b) agregados espacialmente a toda la península ibérica.
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Análisis de impactos

Selección de la serie temporal óptima

Se ha realizado una correlación entre la producción y las indemnizaciones para así conocer qué grupos de especies son los 
que mejor correlacionan con las pérdidas económicas. A la vista de la Figura 3, se observa que las producciones de frutos secos y 
leguminosas generan un volumen mucho menor que los otros 6 grupos y, no obstante, las mejores correlaciones se obtienen para los 
grupos leguminosas (r = 0.60), especies de grano grueso (r = 0.68) y cereales (r = 0.67). Esto indica que a pesar de que el impacto de 
la producción de leguminosas no es significativo del impacto económico total, la producción sí que se ve afectada económicamente 
de la misma manera que los grandes grupos. Esto indica que es un producto cuya sensibilidad a la sequía es semejante a la de los 
cereales. En la Figura 8 se muestran los 2 grupos de producción cuya correlación con las desviaciones del riesgo respecto del riesgo 
efectivo es más alta, ambas series con la tendencia corregida.

Figura 8 | Representación gráca de la evolución de los dos grupos de especies (grano grueso y cereales, eje de ordenadas a la izquierda de la gura) 
mejor correlacionados con la desviación del riesgo (línea negra, eje de ordenadas a la derecha de la gura), ambas series con la tendencia eliminada.

Tras analizar las 20 series temporales, se ha visto que las series creadas a partir de métricas estadísticas correlacionan peor 
que las 12 series anuales de cada mes. Por ello, en la Figura 9 se muestran únicamente las correlaciones de las 12 series temporales 
de eneros, febreros, marzos, etc., con los datos económicos (arriba), producción de cereales (centro) y producción de especies de 
grano grueso (abajo). Además, se ha reflejado el valor que mejor correlaciona para cada agregación y cada índice.

A la vista de los resultados de la figura 9, se observa globalmente que los paneles de correlación de los índices con los 
rendimientos de las producciones de cereal (centro) y grano grueso (abajo) son muy similares. Esto indica que la forma en la que la 
precipitación, la temperatura y la humedad del suelo afectan a la producción de cereal y de grano grueso es similar. Sin embargo, 
estos dos paneles nada tienen que ver con el panel de desviaciones del riesgo (arriba), mostrando un comportamiento generalmente 
peor en términos de correlación.

Figura 9 | Valores de correlación r de Spearman para las 12 series anuales de eneros (E), febreros (F), marzos (M), etc., con la serie de desviaciones 
económicas estandarizadas (arriba), con la serie de rendimiento estandarizado de la producción de cereales (centro) y con la serie de rendimiento 
estandarizado de la producción de grano grueso (abajo).
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Para el panel de desviaciones económicas, las mejores correlaciones se obtienen para los índices SPI y SPEI a una 
agregación temporal de 9 meses para la serie de mayos. En el caso del SSMI, la mejor correlación se obtiene para una agregación 
de 6 meses y para la serie anual de junios. Estos resultados agregados son consistentes con todo lo comentado en el análisis 
desagregado con relación a la agregación temporal de 3 meses de diferencia que marcaba la mejor correlación entre los índices 
SPI y SPEI con el SSMI. A pesar de la alta correlación entre los índices SPI y SPEI, en general se obtienen valores de correlación 
más bajos para SPEI cuando se cruzan con datos económicos. Esta correlación es aún más baja en la mayoría de las agregaciones 
del índice SSMI, mejorando únicamente su correlación para una agregación de 1 mes. Además, se puede observar como a 
medida que aumenta el período de agregación la correlación mejora en la mayoría de las series. Esto indica que las desviaciones 
económicas no están influenciadas por lo que pueda ocurrir climáticamente un mes del año (de hecho, las correlaciones a 
agregación de 1 mes son muy bajas), sino que es el conjunto del clima de 9 y de 12 meses lo que marca la desviación económica 
de cierto año. En cualquier caso, se deduce de estos resultados que es el clima de septiembre a mayo el que mejor correlaciona 
con las desviaciones económicas de cierto año, sin tanta relevancia para la humedad del suelo. Ese resultado parece tener sentido 
si se relaciona con los calendarios de siembra de las especies aseguradas. Tanto en uno como en otro tipo, hay de invierno y de 
primavera. La variedad de invierno se siembra en otoño, entre el 1 de octubre y el 15 de noviembre mientras que la variedad de 
primavera se siembra del 15 de febrero al 1 de abril. El período crítico para la economía de las desviaciones del riesgo asegurado 
se produce exactamente en el período de siembra de ambas especies. Además, para la variedad de invierno también abarca su 
período de recolección.

Para el panel de rendimiento estandarizado de cereales, la mejor correlación se obtiene para el índice SSMI a una 
agregación temporal de 1 mes para la serie de mayos. En el caso de los índices SPI y SPEI se obtiene una correlación muy 
similar, siendo la mayor obtenida para la agregación de 3 meses y los meses de mayo. Nuevamente se observa la consistencia 
con los resultados obtenidos en el análisis desagregado. No obstante, destaca la alta correlación del índice SSMI, con un valor 
de r de Spearman de 0.92. Esto refleja la importancia que tiene la humedad del suelo en el mes de mayo en la producción de ese 
año. Este valor va descendiendo para los meses de verano y drásticamente para los meses de otoño e invierno, con resultados 
que no presentan apenas correlación con el rendimiento de la producción. Si se observa la Figura 1, donde se presentaban los 
ciclos de precipitación, temperatura y humedad del suelo de la serie histórica, se puede ver que, durante el período de siembra 
de las variedades de invierno, la precipitación adquiere valores máximos y la temperatura mínimos. Por tanto, es una variedad 
sembrada en época húmeda y cuyo crecimiento también se produce en una época húmeda. Sin embargo, la variedad de primavera 
se siembra cuando la precipitación comienza a descender y la temperatura a aumentar, con un crecimiento de la plantación que 
se va a producir en los meses de mayo y junio, meses en los que las precipitaciones comienzan a descender y la temperatura a 
ascender. Es, por tanto, un momento mucho más crítico para la producción que el momento en el que se plantan las variedades 
de invierno. De hecho, se observan también correlaciones altas para el SSMI-3 en estos meses calificados como críticos para la 
producción.

Por último, en el panel de rendimiento estandarizado de grano grueso, como se ha comentado, se obtiene una situación 
similar a la descrita en el párrafo anterior. La mayor correlación se obtiene nuevamente para el índice SSMI agregado a 1 mes 
para la serie formada por los mayos históricos. En general, los valores son algo más bajos que en el caso anterior, sin ser algo 
notable, pero que puede indicar mayor sensibilidad a la sequía de las especies englobadas en el grupo cereales que las englobadas 
en el grupo de grano grueso.

Con el objetivo de visualizar de forma gráfica las mejores correlaciones obtenidas, se ha representado en la Figura 10 las 
diferencias de las desviaciones en el riesgo (arriba), el rendimiento de cereales (centro) y rendimiento de grano grueso (abajo) 
con las series temporales de SPI, SPEI y SSMI que mejor correlacionan en cada uno de los 3 casos de estudio. Se puede observar 
el parecido entre las dos series de diferencias referidas a producción. Se puede observar una gran desviación en las series de 
desviaciones del riesgo de los tres índices en algunos años, como el año 2000. Si se observa la Figura 2, en ese año no solo no 
existe un pico, sino que parece una desviación favorable y, no obstante, los tres índices estudiados adquieren valores cercanos 
a -1. Esta situación representa una situación clara en la que el método de umbrales no habría resultado válido, indicando que es 
un año seco cuando en realidad no ha generado impacto en la economía. Esta situación se repite, aunque menos acentuada, en el 
caso del rendimiento de producción.
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Figura 10 | Desviaciones en el riesgo (arriba), el rendimiento de cereales (centro) y rendimiento de grano grueso (abajo) con las series temporales 
de SPI, SPEI y SSMI que mejor correlacionan en cada uno de los 3 casos de estudio.

DISCUSIÓN Y CONCLUSIONES

El estudio realizado ha permitido evaluar las grandes sequías históricas ocurridas en España desde el punto de vista de los 
impactos generados por estos eventos. Se ha comprobado cómo los 3 índices utilizados (SPI, SPEI y SSMI) tienen una estrecha 
relación con los valores de anomalías económicas y producción agrícola. La escala global del estudio realizado está condicionada 
por los datos económicos de partida, ya que pertenecen a reaseguradoras y éstas realizan indemnizaciones en situaciones 
extremadamente adversas. Por tanto, este estudio ha permitido identificar y cuantificar el impacto de las sequías sufridas en todo el 
territorio español y no de sequías locales.

Se ha observado cómo se produce un mismo comportamiento de los índices cuando estos están agregados espacialmente que 
en su forma desagregada. Así, las principales conclusiones obtenidas del estudio píxel a píxel son:

a. un período de agregación de 9 meses es suficiente para representar el comportamiento anual de los 3 índices,

b. los índices SPI y SPEI muestran correlaciones muy altas para los mismos períodos de agregación, siendo la temperatura una 
variable que afecta principalmente a la zona sur de España,

c. el índice SSMI presenta correlaciones muy altas con los índices SPI y SPEI a períodos de agregación de 3 meses de 
diferencia, concluyendo de ello que, para la humedad del suelo, es más relevante la precipitación y temperatura de los 3 
meses previos que del mes en curso o de épocas anteriores a 3 meses.

Para el cálculo del SSMI se han utilizado valores de humedad de suelo simulados y se ha comprobado su bondad con 
datos de satélite. Se ha visto que, en parte de las celdas de estudio, el valor de correlación es pobre. Esto puede ser debido a que 
los datos de satélite son incompletos y, en muchas de las celdas de estudio, hay huecos de más de un año de datos. No obstante, el 
comportamiento en la mayor parte de las celdas (más de un 70 %) es bueno.
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Del análisis de la relación de los impactos con los índices de sequía, se ha observado que los períodos de agregación que 
presentan más correlación con las desviaciones de riesgo estandarizadas son diferentes a los períodos de agregación que mejor se 
correlacionan con el rendimiento estandarizado de la producción. Por ello, identificar sequías a través de los impactos derivados 
requiere de un estudio específico del período de agregación que mejor lo representa.

En el caso económico, se ha obtenido la mejor correlación para períodos de agregación de 9 meses para el SPI y SPEI y de 
6 meses para el SSMI, mostrando esa diferencia de 3 meses entre ambas agregaciones. No obstante, la humedad del suelo parece no 
ser determinante en la determinación del impacto económico derivado, puesto que su correlación y su coeficiente de determinación 
han mostrado valores muy pobres. Contrariamente, la precipitación y la temperatura sí parecen ser factores más importantes.

En el caso de la producción, la agregación que presenta mejor correlación es de 3 meses para SPI y SPEI y de 1 mes para 
SSMI, nuevamente con una diferencia de 3 meses, para los dos grupos de especies estudiados. De esta información se deriva la 
importancia que tiene la humedad del suelo en el mes de mayo para determinar la producción agrícola anual. Además, la correlación 
para el caso del SSMI resulta tener valores muy elevados, con lo que se concluye que la humedad del suelo es un parámetro muy 
importante que considerar en el análisis de sequías cuando se quiere evaluar los impactos reales que éstas generan en la producción 
de las especies más importantes de España.

De los 3 casos de estudio (económico, producción de cereales y producción de grano grueso), se observa que el SSMI es el 
índice que mejor se correlaciona de entre todas las relaciones estudiadas, ya que los valores obtenidos de correlación r y r2 de SPI 
y SPEI con datos económicos son mucho menores que aquellos obtenidos con el SSMI y datos de producción. Por tanto, queda 
patente la importancia de la humedad del suelo en el estudio de sequías.

AGRADECIMIENTOS

Los autores agradecen al proyecto INDECIS, que forma parte de la iniciativa ERA 4CS, ERA-NET desarrollada por JPI 
Climate, y financiada por FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) y cofinanciada por la 
European Union (Grant 690462).

REFERENCIAS

AEMET. 2012. Escenarios-PNAC. http://www.aemet.es/es/serviciosclimaticos/cambio_climat/datos_mensuales/ayuda; 
http://www.meteo.unican.es/escenarios-pnacc.

Beguería, S., Vicente-Serrano, S.M., Latorre Fergus Reig, B. 2014. Standardized precipitation evapotranspiration index (SPEI) 
revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology
34(10), 3001-3023. https://doi.org/10.1002/joc.3887

Beyene, B.S., Van Loon, A.F., Van Lanen, H.A.J., Torfs, P.J.J.F. 2014. Investigation of variable threshold level 
approaches for hydrological drought identification. Hydrology and Earth System Sciences Discussions, 11, 12765-12797. 
https://doi.org/10.5194/hessd-11-12765-2014

Carrão, H., Russo, S., Sepulcre-Canto, G., Barbosa, P. 2016. An empirical standardized soil moisture index for agricultural drought 
assessment from remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 48, 74-84. 
https://doi.org/10.1016/j.jag.2015.06.011

ESYRCE. 2018. Encuesta sobre Superficies y rendimientos. Ministerio de Agricultura, Pesca y Alimentación.

Fleig, A.K., Tallaksen, L.M., Hisdal, H., Demuth, S. 2006. «A global evaluation of streamflow drought characteristics.» Hydrology 
and Earth System Sciences. https://doi.org/10.5194/hess-10-535-2006

https://doi.org/10.5194/hess-10-535-2006
https://doi.org/10.1016/j.jag.2015.06.011
https://doi.org/10.5194/hessd-11-12765-2014
https://doi.org/10.1002/joc.3887
http://www.meteo.unican.es/escenarios-pnacc
http://www.aemet.es/es/serviciosclimaticos/cambio_climat/datos_mensuales/ayuda


Sainz de la Maza y del Jesus | Análisis de sequías históricas a través de los impactos derivados 155Ingeniería del Agua  |  24.3  |  2020

2020, IWA Publishing, Editorial Universitat Politècnica de València, FFIA

Gayathri, K.D., Ganasri, B.P., Dwarakish, G.S. 2015. A Review on Hydrological Models. Aquatic Procedia, 4, 1001-1007.
https://doi.org/10.1016/j.aqpro.2015.02.126

Global Land Cover Facility. 2018. http://www.landcover.org/data/lai/.

González-Zamora, Á., Sánchez, N., Pablos, M., Martínez-Fernández, J. 2019. CCI soil moisture assessment with SMOS 
soil moisture and in situ data under different environmental conditions and spatial scales in Spain. Elsevier, 225, 469-482. 
https://doi.org/10.1016/j.rse.2018.02.010

Herrera, S., Fernández, J., Gutiérrez, J.M. 2016. Update of the Spain02 Gridded Observational Dataset for Euro-CORDEX 
evaluation: Assessing the Effect of the Interpolation Methodology. International Journal of Climatology, 36, 900-908. 
https://doi.org/10.1002/joc.4391

Herrera, S., Gutiérrez, J.M., Ancell, R., Pons, M.R., Frías, M.D., Fernández J. 2012. Development and Analysis of a 50 year 
high-resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology, 35, 74-85. 
https://doi.org/10.1002/joc.2256

Homdee, T., Pongput, K., Kanae, S. 2016. A comparative performance analysis of three standardized climatic drought indices in the 
Chi River basin, Thailand. Agriculture and Natural Resources, 50(3), 211-219. https://doi.org/10.1016/j.anres.2016.02.002

Kim, W., Iizumi, T., Nishimori, M. 2019. Global Patterns of Crop Production Losses Associated with Droughts from 1983 to 2009. 
Journal of Applied Meteorology and Climatology, 58(6), 1233-1244. https://doi.org/10.1175/JAMC-D-18-0174.1

King, D.A., Bachelet, D.M.,  Symstad, A.J., Ferschweiler, K., Hobbins, M. 2015. Estimation of potential evapotranspiration from 
extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern 
Great Plains, USA. Ecological Modelling, 297, 86-97. https://doi.org/10.1016/j.ecolmodel.2014.10.037

Liu, X., Zhu, X., Pan, Y., Bai, J., Li, S. 2018. Performance of different drought indices for agriculture drought in the North China 
Plain. Journal of Arid Land, 10, 507-516. https://doi.org/10.1007/s40333-018-0005-2

Lopez-Nicolas, A., Pulido-Velazquez, M., Macian-Sorribes, H. 2017. Economic risk assessment of drought impacts on irrigated 
agriculture. Journal of Hydrology, 550, 580-589. https://doi.org/10.1016/j.jhydrol.2017.05.004

Martín Vide, J., Ocina Cantos, J. 2001. Climas y tiempos de España. Madrid: Alianza Editorial.

Martínez, E. 2010. Evaluación del impacto producido por el cambio climático sobre los recursos hídricos de varias cuencas piloto 
catalanas y navarras. Tecniberia, 26, 49-51.

McKee, T.B., Doesken, N.J., Kleist, J. 1993. The relationship of drought frequency and duration of time scales. Anaheim, California: 
American Meteorological Society, Boston.

Mishra, A.K., Singh, V.P. 2011. Drought modeling � A review. Journal of Hydrology, 403(1-2), 157-175. 
https://doi.org/10.1016/j.jhydrol.2011.03.049

Ollero Lara, A.,Crespo Vergara, S.I., Pérez Cimas, M. 2018. Las sequías y España. La respuesta del seguro agrario a un problema 
intermitente. Madrid: CONAMA.

Palmer, W.C. 1965. Meteorological Drought. Research Paper No. 45, 58. US Weather Bureau, Washington, DC.

Samper, J., Álvares, D. 2005. Evaluación de los impactos del cambio climático en los recursos hídricos del río Ebro. Oficina de 
Planificación Hidrológica de la Confederación Hidrográfica del Ebro, Dirección General del Agua, Ministerio de Agricultura y 
Pesca, Alimentación y Medio Ambiente.

Sheffield, J., Wood, E.F. 2011. Drought: past problems and future scenarios. London: Routledge. https://doi.org/10.4324/9781849775250

Trambauer, P., Werner, M., Winsemius, H., Maskey, S., Dutra, E., Uhlenbrook, S. 2014. Hydrological drought forecasting and 
skill assessment for the Limpopo river basin, Southern Africa. Hydrology and Earth System Sciences Discussions, 19, 1695-1711. 
https://doi.org/10.5194/hess-19-1695-2015

https://doi.org/10.5194/hess-19-1695-2015
https://doi.org/10.4324/9781849775250
https://doi.org/10.1016/j.jhydrol.2011.03.049
https://doi.org/10.1016/j.jhydrol.2017.05.004
https://doi.org/10.1007/s40333-018-0005-2
https://doi.org/10.1016/j.ecolmodel.2014.10.037
https://doi.org/10.1175/JAMC-D-18-0174.1
https://doi.org/10.1016/j.anres.2016.02.002
https://doi.org/10.1002/joc.2256
https://doi.org/10.1002/joc.4391
https://doi.org/10.1016/j.rse.2018.02.010
https://doi.org/10.1016/j.aqpro.2015.02.126


156 Sainz de la Maza y del Jesus | Análisis de sequías históricas a través de los impactos derivados Ingeniería del Agua  |  24.3  |  2020

2020, IWA Publishing, Editorial Universitat Politècnica de València, FFIA

Van Loon, A.F., Van Lanen, H.A., Tallaksen, H., Hisdal, L.M., Fendeková, M., Oosterwijk, J., Horvát, O., Machlica, A. 2010. 
Understanding hydrological winter drought in Europe. Morocco: Proc. of the Sixth World FRIEND conference.

Van Loon, A.F., Gleeson, T., Clark, J., Van Dijk, A.I.J.M., Stahl, K., Hannaford, J., Di Baldassarre, G., … Van Lanen, H.A.J. 2016. 
Drought in the Anthropocene. Nature Geoscience, 9, 89-91. https://doi.org/10.1038/ngeo2646

Vicente Serrano, S.M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J.J., López-Moreno, J.I., Azorín-Molina, C., Revuelto, J., 
Morán-Tejeda, E., Sánchez-Lorenzo, A. 2012. Análisis comparativo de diferentes índices de sequía para aplicaciones ecológicas, 
agrícolas e hidrológicas. Salamanca: Asociación Española de Climatología.

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I. 2010. A Multiscalar Drought Index Sensitive to Global Warming: The 
Standardized Precipitation Evapotranspiration Index. Journal of climate, 23, 1696-1718. https://doi.org/10.1175/2009JCLI2909.1

Vicente-Serrano, S.M., Lopez-Moreno, J.I., Beguería, S., Sanchez-Lorenzo, A., García-Ruiz, J.M., Azorin-Molina, C., Morán-
Tejeda, E., � Espejo, F. 2014. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental 
Research Letters, 9(4). https://doi.org/10.1088/1748-9326/9/4/044001

https://doi.org/10.1088/1748-9326/9/4/044001
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1038/ngeo2646


Drought Sensitiveness on Forest Growth in Peninsular Spain and 
the Balearic Islands 



Article

Drought Sensitiveness on Forest Growth in
Peninsular Spain and the Balearic Islands

Marina Peña-Gallardo 1,*, Sergio M. Vicente-Serrano 1, J. Julio Camarero 1 ID , Antonio Gazol 1 ID ,
Raúl Sánchez-Salguero 2, Fernando Domínguez-Castro 1 ID , Ahmed El Kenawy 1,3,
Santiago Beguería-Portugés 4, Emilia Gutiérrez 5, Martin de Luis 6 ID ,
Gabriel Sangüesa-Barreda 1 ID , Klemen Novak 6,7, Vicente Rozas 8, Pedro A. Tíscar 9,
Juan C. Linares 2 ID , Edurne Martínez del Castillo 6 ID , Montserrat Ribas Matamoros 5,
Ignacio García-González 10 ID , Fernando Silla 11 ID , Álvaro Camisón 12, Mar Génova 13 ID ,
José M. Olano 8 ID , Luis A. Longares 6, Andrea Hevia 14 and J. Diego Galván 15

1 Instituto Pirenaico de Ecología (IPE-CSIC), 50192 Zaragoza, Spain; svicen@ipe.csic.es (S.M.V.-S.);
jjcamarero@ipe.csic.es (J.J.C.); agazol@ipe.csic.es (A.G.); f.dominguez@ipe.csic.es (F.D.-C.);
kenawy@ipe.csic.es (A.E.K.); gsanguesa@ipe.csic.es (G.S.-B.)

2 Departamento de Sistemas Físicos, Químicos y Naturales, Universidad de Pablo de Olavide,
41013 Sevilla, Spain; rsanchez@upo.es (R.S.-S.); jclincal@upo.es (J.C.L.)

3 Department of Geography, Mansoura University, 35516 Mansoura, Egypt
4 Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC),

50192 Zaragoza, Spain; santiago.begueria@csic.es
5 Department of Evolutionary Biology, Ecology and Environmental Sciences, Barcelona University,

08028 Barcelona, Spain; emgutierrez@ub.edu (E.G.); mribas@porthos.bio.ub.es (M.R.M.)
6 Departamento de Geografía y Ordenación del Territorio—IUCA, Universidad de Zaragoza,

50009 Zaragoza, Spain; mdla@unizar.es (M.d.L.); kn4@alu.ua.es (K.N.); edurne@unizar.es (E.M.d.C.);
lalongar@unizar.es (L.A.L.)

7 Departamento de Ecología, Universidad de Alicante, Carretera San Vicente del Raspeig s/n,
03080 Alicante, Spain

8 Departamento de Ciencias Agroforestales, EU de Ingenierias Agrarias, iuFOR—Universidad de Valladolid,
42004 Soria, Spain; vicentefernando.rozas@uva.es (V.R.); josemiguel.olano@uva.es (J.M.O.)

9 Centro de Capacitación y Experimentación Forestal. C/. Vadillo-Castril, 23470 Cazorla, Spain;
pedroa.tiscar@juntadeandalucia.es

10 Departamento de Botánica, Escola Politécnica Superior de Enxeñaría Campus Terra,
Universidade de Santiago de Compostela, 27002 Lugo, Spain; ignacio.garcia@usc.es

11 Departamento de Biología Animal, Parasitología, Ecología, Edafología y Química Agrícola,
Universidad de Salamanca, 37071 Salamanca, Spain; fsilla@usal.es

12 Ingeniería Forestal y del Medio Natural, Universidad de Extremadura, 10600 Plasencia, Spain;
alvarocc@unex.es

13 Departamento de Sistemas y Recursos Naturales, Universidad de Politécnica de Madrid,
28040 Madrid, Spain; mar.genova@upm.es

14 Forest and Wood Technology Research Centre (CETEMAS), 33936 Asturias, Spain; ahevia@cetemas.es
15 Ionplus AG. Lerzenstrasse 12, 8953 Dietikon, Switzerland; galvan@ionplus.ch
* Correspondence: marinapgallardo@ipe.csic.es

Received: 23 July 2018; Accepted: 27 August 2018; Published: 30 August 2018
���������
�������

Abstract: Drought is one of the key natural hazards impacting net primary production and tree
growth in forest ecosystems. Nonetheless, tree species show different responses to drought
events, which make it difficult to adopt fixed tools for monitoring drought impacts under
contrasting environmental and climatic conditions. In this study, we assess the response of
forest growth and a satellite proxy of the net primary production (NPP) to drought in peninsular
Spain and the Balearic Islands, a region characterized by complex climatological, topographical,
and environmental characteristics. Herein, we employed three different indicators based on
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in situ measurements and satellite image-derived vegetation information (i.e., tree-ring width,
maximum annual greenness, and an indicator of NPP). We used seven different climate drought
indices to assess drought impacts on the tree variables analyzed. The selected drought indices
include four versions of the Palmer Drought Severity Index (PDSI, Palmer Hydrological Drought
Index (PHDI), Z-index, and Palmer Modified Drought Index (PMDI)) and three multi-scalar indices
(Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Precipitation Index (SPI),
and Standardized Precipitation Drought Index (SPDI)). Our results suggest that—irrespective of
drought index and tree species—tree-ring width shows a stronger response to interannual variability
of drought, compared to the greenness and the NPP. In comparison to other drought indices
(e.g., PDSI), and our results demonstrate that multi-scalar drought indices (e.g., SPI, SPEI) are more
advantageous in monitoring drought impacts on tree-ring growth, maximum greenness, and NPP.
This finding suggests that multi-scalar indices are more appropriate for monitoring and modelling
forest drought in peninsular Spain and the Balearic Islands.

Keywords: normalized difference vegetation index; tree-rings; drought indices; forest
productivity; Spain

1. Introduction

Drought is a major hydroclimatic hazard that is difficult to quantify, analyze, monitor and, thus,
mitigate [1]. This is because drought has a complex nature, given that it is the result of the synergy
among a wide range of variables (e.g., precipitation, temperature, land use, human activities, etc.).
Additionally, assessing the impacts of drought on natural and human environments can vary among
regions and systems depending on their response and vulnerability. Furthermore, it is difficult
to prevent droughts, due to their slow and less evident onset compared to other natural hazards
(e.g., floods, landslides, volcanic eruptions), on one hand, and their serious and adverse socioeconomic
and environmental impacts, on the other hand [2,3].

Droughts may trigger forest decay and mortality episodes [4,5], which have increased over the
last decades in many regions worldwide [6,7]. The Mediterranean region has witnessed frequent
and severe drought episodes, inducing important impacts to forests [8,9] given that both primary
and secondary growth are constrained by water availability [10]. Some tree species and phenotypes
are more sensitive to drought-triggered growth decline and damage [11,12]. Local environmental
and climatic conditions can complicate further the response of forests to drought [13,14]. However,
assessing forest response to drought is a challenging task, as species [15], and even individuals [16],
differ in their sensitivity to this phenomenon. Moreover, spatial variability in climatic and topographic
conditions adds a finer grain to drought pattern predictions.

The Iberian Peninsula (IP) is characterized by a great heterogeneity of climate types, ranging
from a humid Atlantic climate in the northwest and north to semi-arid Mediterranean conditions
in the east and southeast [17]. As such, the response of forests to drought incidence vary
markedly over space. In this context, changing climatic conditions (e.g., abnormal low precipitation,
temperature rise), mostly during the previous winter of the growing season, cause a reduction in Net
Primary Production (NPP), growth decline, as well as forest die-off in some extreme cases [5,18–20].
In Mediterranean forests, radial growth sensitivity to drought intensity varies depending on soil
moisture and precipitation, both factors being highly variable in space and time in the region.
In particular, while tree growth responses at short time scales are more associated with consecutive
periods of dryness and moisture conditions, responses at longer time scales are linked to less
frequent, but more intense, drought events [10]. Some Mediterranean species experience a higher
recovery to pre-drought growth level at short-term than at long-term timescale, either for declining
or non-declining individuals [18]. Nonetheless, a general increase of crown defoliation trend has
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been observed in the IP over the last decades, especially in drier areas, where tree mortality is also
related to dynamic changes at the trophic level as a consequence of drought impacts related to climate
warming [21].

Forests are an important component of the terrestrial ecosystems dynamics, given its capital
role in the hydrological and carbon cycles [22,23]. Furthermore, forests are sources for minerals,
agricultural products, recreation and other benefits to mankind [4]. In this respect, Zhao et al. [24]
found that drought is the leading cause of global NPP depletion. The eco-physiological impacts
drought causes in vegetation are diverse [25], with some plant responses to drought stress related
to stomata regulation, osmotic adjustment, and anti-oxidative defense [26]. However, reduction of
photosynthesis is the ultimate impact of drought. Dramatic changes in primary metabolism lead to a
decline in leaf net carbon uptake as a consequence of a decrease in water availability [27]. A prolonged
reduced photosynthetic activity may lead to the decrease of molecular oxygen and the increase of
reactive oxygen species inducing important damage to the photosynthetic apparatus [28]. Accordingly,
the response of forests to drought has been a matter of interest in the scientific community [29–31].
In this context, a comprehensive assessment of the links between drought, NPP, and secondary growth
among different forest ecosystems is still lacking.

Dendrochronological techniques have quantified secondary growth over time in a wealth of tree
species [10,11,32,33]. Tree-rings provide short- to long-term information about annual radial growth,
a proxy of carbon uptake and NPP [34]. Tree-ring width data have been used to identify the effects of
drought on forest growth and vitality [20,35]. However, few dendrochronological studies have related
tree-ring width data with surrogates of primary growth and NPP at consistent temporal (long) and
spatial (broad coverage) scales [36]. Vegetation indices derived from satellite remote-sensing data,
have proven valuable to monitor forests from local [37–39] to global scales [40]. The Normalized
Difference Vegetation Index (NDVI) is commonly used to quantify the photosynthetic activity, which is
closely related to the total biomass production and the vegetation NPP [41,42]. In the same context,
a wide range of drought indices have been developed over the last decades [43,44]. These indices are
well-recognized as useful tools for assessing drought under different hydrological and agricultural
conditions [3,45–47].

The aims of this work are two-fold. First, it aims at comparing and assessing the performance
of a range of drought indices for monitoring the response of vegetation activity, as summarized
by tree-ring width, maximum annual greenness, and a surrogate of the NPP, to drought impacts.
Second, it assesses and contrasts the response of tree-ring width and NDVI to drought conditions for
different species. To accomplish this task, we linked seven widely used drought indices: Standardized
Precipitation Evapotranspiration Index (SPEI), Standardized Precipitation Index (SPI), Standardized
Palmer Drought Severity Index (SPDSI), and four Palmer-related drought indices (Palmer Drought
Severity Index (PDSI), Palmer Hydrological Drought Index (PHDI), Palmer Z-Index (Z), and Palmer
Modified Drought Index (PMDI)) with climatic, NDVI, and dendrochronological data for the IP and the
Balearic Islands for the period 1981–2015. As a result we should be able to assess the validity of these
drought indices to assessing and monitor the impacts of drought on forest growth and vitality [48–50].

2. Data and Methods

2.1. Datasets Description

We employed a daily dataset of meteorological variables (precipitation, maximum and minimum
air temperatures, wind speed, sunshine duration and relative humidity) provided by the Spanish
National Meteorological Agency (AEMET). The original dataset was subjected to a rigorous procedure
to ensure data quality and homogeneity. Daily records were aggregated to weekly data and gridded at
a 1.1 km resolution. Further details about data development are outlined in Vicente-Serrano et al. [51].
Based on the available input variables, we also calculated reference evapotranspiration (ETo) using



Forests 2018, 9, 524 4 of 20

the Penman-Monteith equation recommended by the FAO [52]. For this analysis, we aggregated the
weekly gridded data at monthly scale for the period 1981–2015.

2.2. NDVI Data

The Normalized Difference Vegetation Index (NDVI) is widely-used to assess vegetation activity,
with a good agreement with the photosynthetically-active radiation absorbed by vegetation [41,53].
Here, we employed NDVI data at 1.1 km resolution for the period 1981 to 2015 at a monthly time scale
aggregation [54]. The original data were obtained from the National Oceanic and Atmospheric
Administration (NOAA) polar orbiting satellites that used the Advanced Very High Resolution
Radiometer (AVHRR) sensors to provide daily satellite images. Our selection allowed to characterize
vegetation activity with more detailed spatial coverage and finer temporal resolution than other
publicly available data sets such as the Global Inventory Monitoring and Mapping Studies (GIMMS)
and the Moderate-Resolution Imaging Spectroradiometer (MODIS) [41,51,52]. In order to obtain
the final NDVI product, the original data were subjected to a series of data processing, including
radiometric calibration [55,56], geometric and topographic corrections [57,58], cloud cover removal [59]
to obtain semi-monthly composite images by maximum NDVI value (two images per month) [60].
A comprehensive explanation of this procedure is found in Vicente-Serrano et al. [54].

2.3. Tree-Ring Width Data

We compiled annual tree-ring width chronologies of 568 forest stands covering the majority of
forest areas across the IP and the Balearic Islands from 1981 to 2015 (Figure 1). Chronologies were
obtained using the basic dendrochronological protocol [34]. At least 10 dominant or codominant
trees located in undisturbed stands were selected and cored at 1.3 m using increment borers to obtain
2–3 cores per tree in each forest. The selected study sites represent a wide sample of conifers and
hardwood species subjected to different climatic and edaphic conditions along the Spanish territory.
Latitude, longitude, and mean elevation were recorded at each sample. Wood samples were air-dried
and sanded until rings were clearly visible and then visually cross-dated. Tree-ring width was
measured to at least the nearest 0.01 mm using binocular microscopes and measuring device systems
(Lintab, RinnTech, Heidelberg, Germany; Velmex Inc., Bloomfirld, NY, USA). In order to check the
accuracy of visual cross-dating and measurements, we used the COFECHA program, based on moving
correlations between each individual tree-ring series and the mean site series [61]. Additionally,
to remove the trends in tree-ring width due to tree aging and the enlargement of the stem, we used
traditional dendrochronological protocols [34]. Specifically, we detrended each individual tree-ring
width series by fitting negative exponential curves and then obtained the residuals through dividing
the observed values by the fitted ones. Then, we averaged the detrended series of tree-ring width
indices (hereafter TRWi) for each forest by computing bi-weight robust means. The mean site-level
chronology represents the average growth series of a variable number of trees of the same species
growing at the same forest stand. Since no autoregressive modelling was performed, we removed
the low- to mid-frequency variability, while keeping the high-frequency variability and the first-order
autocorrelation. The procedure of chronology building was implemented using the ‘dplR’ package
within the R platform [62]. Table 1 summarizes the main characteristics of the tree species used in
this study.
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Table 1. List of tree species, abbreviations, and number of the sampled forests stands; including the average mean annual temperature and precipitation of each tree
species location.

Gymnosperms Angiosperms

Tree Species Abbreviation
Number of

Sampled Forests
Stands

Mean Annual
Temperature

(◦C)

Annual
Precipitation

(mm)
Tree Species Abbreviation

Number of
Sampled Forests

Stands

Mean Annual
Temperature

(◦C)

Annual
Precipitation

(mm)

Abies alba ABAL 48 13.10 1439.98 Fagus sylvatica FASY 51 14.36 1212.98

Abies pinsapo ABPN 15 17.53 1467.33 Quercus
pyrenaica QUPY 34 16.20 878.27

Pinus halepensis PIHA 119 19.93 599.87 Quercus robur QURO 34 16.19 1484.53

Pinus sylvestris PISY 76 14.80 958.32 Quercus
faginea QUFA 19 16.89 975.97

Pinus nigra PINI 66 17.05 754.00 Quercus ilex QUIL 5 17.32 786.00

Pinus uncinata PIUN 39 10.11 1442.68 Quercus
petraea QUPE 7 15.58 1062.13

Pinus pinaster PIPI 20 18.52 705.30 Castanea sativa CASA 10 17.50 928.00
Pinus pinea PIPN 9 19.98 550.89
Juniperus thurifera JUTH 16 17.22 690.59
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Figure 1. Location of the sampled forest stands in the study domain. Note that the conifer forests
(n = 408 sites) dominate in the driest regions (Mediterranean climate) of Eastern and Southeastern Spain,
and also in mountainous terrain, while hardwood forests prevail in the wettest and temperate regions
(Atlantic climate) in Northwestern and Northern Spain (n = 160 sites).

2.4. Drought Indices

We computed the seven drought indices based on the monthly climate data for each location
to each sampled forest stand as the time of response to drought indices is not known beforehand,
described as follows.

2.4.1. Palmer Drought Severity Indices (PDSIs)

The Palmer Drought Severity Index (PDSI) is a well-known meteorological drought index
proposed by Palmer [63] along with the Palmer Hydrological Drought Index (PHDI), the Palmer
Moisture Anomaly Index (Z-index), and the Palmer Modified Drought Index (PMDI). While Palmer
indices account for supply-demand relationship of soil moisture using precipitation and air
temperature data, our preference was to use a modification of the original methodology to limit the
possible impact of lack of comparability between differentiated regions [64–66]. This issue was solved
by Wells et al. [62] who employed the self-calibrated Palmer indices algorithm, which automatically
determines the appropriate and spatially-comparable regional coefficients. Hereafter, we will use the
original acronyms to refer to the self-calibrated versions of Palmer drought indices. As opposed to
multiscalar drought indices (e.g., SPI, SPEI, SPDI), PDSIs are uni-scalar.

2.4.2. Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) was developed by McKee et al. [67]. The SPI introduced
for the very first time a new functional definition of drought based on the standardized precipitation
and time scales to quantify precipitation shortages along time. The index is based on the conversion of
the precipitation series using an incomplete Gamma distribution to a standard normal variable with
the mean equal to zero and variance equal to one. The SPI is the universal reference meteorological
index according to the World Meteorological Organization [68].

2.4.3. Standardized Precipitation Evapotranspiration Index (SPEI)

The Standardized Precipitation Evapotranspiration Index (SPEI) was proposed by
Vicente-Serrano et al. [69], accounting for the possible impact of reference evapotranspiration
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on drought. In particular, the SPEI is based on the computation of monthly climate water balances
(precipitation minus reference evapotranspiration) accumulated at different timescales. The resulting
values are later transformed to a normal standardized variable using a three-parameter log-logistic
distribution, allowing for direct comparison over space. The SPEI has been widely used in multiple
drought-related studies, with a main focus on evaluation of drought impacts, recurrence, variability,
or reconstruction.

2.4.4. Standardized Precipitation Drought Index (SPDI)

The Standardized Precipitation Drought Index (SPDI) was introduced by Ma et al. [70]. It is
defined as a combination of the PDSI and SPI. It also implements the timescale concept and the
statistical nature of the SPI and SPEI [71] as well as the water balance concept defined by Palmer [64].
For its calculation, the SPDI-accumulated values are transformed to a standard normal variable using
a generalized extreme value distribution.

Herein, the multi-scalar indices (i.e., SPEI, SPI and SPDI) were calculated at 1- to 12-, 18-,
and 24-timescale. It is noteworthy emphasizing that the monthly drought indices, for each sampled tree,
were detrended by fitting a linear regression with the time series. This procedure removes any possible
trend that can disturb the comparison among drought and tree-ring growth, given that tree-ring
series were already detrended. Finally, the residual of each series was obtained from linear models,
and summed to the average of the period to obtain the detrended drought indices.

2.5. Statistical Methods

We assessed the response of vegetation activity to the interannual variations of drought for
the common period of time 1981–2015. To achieve the mentioned purpose, three indicators were
considered: TRWi, maximum annual NDVI value (NDVI max) and annual integrated NDVI. The NDVI
max was obtained from the biweekly series of the NDVI, providing information on the maximum
potential vegetation activity in each sampled forest stand. As such, it is considered a reliable indicator
of the annual vegetation growth [72]. In this work, the annual cumulative NDVI (NDVI annual) is
used as a surrogate of NPP. This is simply because the NPP, defined as the net carbon accumulated by
plants per unit and time [73], is closely related to the amount of photosynthetically active radiation
(PAR) captured by green foliage. Thus, the NPP depends on the fraction of photosynthetically active
radiation (FPAR) absorbed by the canopy [74].

We computed the Pearson correlation coefficient between the TRWi, NDVI max, and NDVI annual
and each drought index for the common period 1981–2015. To keep consistency among all variables,
we also detrended the NDVI variables. Since the response of vegetation to drought is expected to
vary at different time scales [40], and the month when the vegetation is most susceptible to drought
is not known a priori, we correlated the 12 monthly series of each drought index with the annual
series of TRWi, NDVI max, and NDVI annual and kept the maximum correlation value for analyzing
spatial and temporal responses of tree variables to drought and the relationship between vegetation
variables and drought by species. We calculated the indices at 1- to 12-, 18-, and 24-month time-scales
for the multi-scalar indices (SPEI, SPI, and SPDI). This procedure resulted in 168 correlation values
(12 correlations for each time-scale) for the multi-scalar indices and 12 correlations for the uni-scalar
indices. We also calculated the climatic water balance as the difference between precipitation and
evapotranspiration (P—ETo) at each sampled forest stand.

3. Results

3.1. Spatial and Temporal Responses of Tree Variables to Drought

The magnitude of maximum Pearson correlations found between each of the selected drought
indices and the three tree variables (TRWi, NDVI max, and NDVI annual) varied considerably
between the two main groups of drought indices: multi-scalar vs. uni-scalar (Figure 2). In general,
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multi-scalar indices had higher correlations than for uni-scalar indices. Remarkably, TRWi had higher
correlations with drought indices than NDVI max and NDVI annual. This pattern was evident for all
drought indices (Figure 2). Correlation values averaged 0.60 for TRWi, and 0.45 and 0.40 for NDVI
annual and NDVI max, respectively. Among the uni-scalar drought indices, the Z-index showed the
highest correlations, particularly with TRWi, although a high percentage of correlations for the four
Palmer indices was statistically non-significant. Among multiscalar indices, SPEI showed the highest
correlations with TRWi and NDVI max, while the SPI correlated better with the NDVI annual (Table 2).

Figure 2. Box plots showing the Pearson correlation coefficients computed between the seven drought
indices and ring-width indices, including (a) TRWi, (b) NDVI max, and (c) NDVI annual. The solid
black line corresponds to the median, the white asterisks denote the mean and dashed lines show the
significant level at p < 0.05 (light pink) and p < 0.01 (dark pink).

Table 2. Percentage of the sampled forest stands, with the maximum Pearson correlation coefficients
found for each forest variable and with each drought index.

TRWi NDVI Max NDVI Annual

SPEI 38.97 43.25 33.50
SPI 35.73 32.48 53.16

SPDI 25.30 24.27 13.33

The spatial distribution of maximum Pearson correlations between the seven drought indices and
vegetation variables in each sampled forest stand is shown in Figure 3. The three multi-scalar drought
indices showed similar spatial patterns, with higher values (r = 0.6–1.0) in forests located mostly in
dry areas of Eastern Spain and the Balearic Islands (Figure 3). In contrast, correlations were lower in
Northern Spain, where wet conditions prevail and hardwood forests dominate. The highest correlation
values for the Palmer drought indices showed spatial patterns similar to those of the multi-scalar
indices, albeit with lower magnitudes of correlation. Among the uni-scalar indices, Z-index and TRWi
showed the highest correlations followed by PMDI and TRWi, with values ranging between 0.4 and 0.6.
In contrast, PDSI and PHDI had the lowest correlations. The differences between PMDI–Z-index and
PDSI–PHDI results were less evident for other variables (i.e., NDVI max and NDVI annual), with low
(r = 0.2–0.4) and spatially homogeneous correlations. Similar results are found for the magnitude and
the distribution of the maximum correlations for the NDVI max and NDVI annual. Regarding the SPI,
higher correlations (r = 0.4–0.6) are found in Northwestern Spain for NDVI annual. The correlations
between the SPEI/SPDI and NDVI annual tend to be higher in Southeast Spain than for NDVI max.
Additionally, we noted that there are no clear spatial differences in the correlations found between the
Palmer drought indices and NDVI max and NDVI annual.
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Figure 3. Spatial distribution of the maximum Pearson correlation coefficients computed between
the seven drought indices and ring-width indices TRWi (a), NDVI max (b), and integrated annual
NDVI (c).

In general, it is evident that TRWi shows a higher response to the interannual variability of
drought than the NDVI max and NDVI annual. Figure 4 shows the relationship between the maximum
correlations obtained relating TRWi and drought indices and those obtained for the NDVI annual and
NDVI max. It can be noted that maximum correlations are much higher considering TRWi than NDVI
metrics. Moreover, there are no clear relationships between the spatial patterns of the correlations.
In particular, the highest correlations between drought indices and TRWi did not imply the highest
correlations with NDVi metrics. The highest percentages of maximum correlations between TRWi and
multi-scalar drought indices were in July (43.08%) and August (40.69%) (Table S1). SPEI correlated
better with TRWi in July (17.09%), while the SPI and SPDI showed better association with TRWi
in August (15.9% and 12.65%, respectively). In contrast, NDVI max showed highest percentage of
maximum correlations in April (63.16%) and May (32.99%); the three drought indices also correlated
most in April, with very similar percentages (SPEI: 21.28%, SPI: 21.11% and SPDI: 20.77%). For NDVI
annual, the majority of forests showed their best correlations in May (90.94%), particularly for the
SPEI (37.61%), the SPI (32.48%), and the SPDI (20.85%). Thus, two distinct temporal patterns could
be observed depending on the analyzed parameter, whereas secondary growth response to drought
severity reached a maximum in July and August, annual vegetation growth (NDVI max) and NPP
(NDVI annual) showed a much earlier response to drought in springtime (April and May).

Figure 4. Scatterplots showing maximum Pearson correlation coefficients found for SPEI-TRWi and
SPI-NDVIannual (a) and SPEI-TRWi and SPEI-NDVImax (b). The solid red line corresponds to the
fitted linear regression model and black line, 1:1.
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3.2. Relationship between Vegetation Variables and Drought by Species

Among tree species, there are no clear differences in the correlations between the multi-scalar
drought indices and NDVI annual and NDVI max (Figure 5). In contrast, the correlations with
TRWi show higher variability amongst tree species. Generally, the NDVI metrics suggest that species
characteristics of moist and cold regions (e.g., Abies alba and Pinus uncinata) tend to show lower
correlations than species of semi-arid climates (e.g., Pinus halepensis).

Figure 5. Box plots showing maximum Pearson correlation coefficients computed between ring-width
indices (TRWi, (a)), NDVI max (b), NDVI annual (c), and the most correlated drought index for each
tree species. The solid black line corresponds to the median, green asterisks mark the mean and
dashed lines show the significance level at p < 0.05 (light pink) and p < 0.01 (dark pink). Species’ codes
correspond to those listed in Table 1.

Conifers from dry regions (Pinus halepensis, Pinus pinaster, and Juniperus thurifera) recorded the
highest correlation coefficients in the case of TRWi (r = 0.70); on the contrary, conifers (Abies pinsapo) and
hardwood species (Castanea sativa and Fagus sylvatica) from wet and temperate regions recorded lower
correlations (r = 0.45). The response of the species to NDVI max—SPEI relationship was more evident
for two species dominant in dry areas: Pinus halepensis and Quercus ilex (r = 0.5). In Figures S1 and S2
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are displayed the maximum correlations (S1) and Pearson’s partial correlations (S2) for the rest of the
indices and variables considered in the analysis for each tree species respectively.

According to Figure 6, the response to medium (4–6 months) to long (>6 months) drought
time-scales are frequently observed. Several tree species (e.g., Quercus ilex, Quercus faginea, Pinus
pinaster, Pinus pinea, Pinus halepensis, and Castanea sativa) exhibited similar long time-scale responses in
the three forest variables. It seems that the response of the interannual variability of tree metrics to
drought was not only driven by the differences among species, but also by the general hydro-climatic
conditions. Figure S3 illustrates the most correlated time-scale found for the rest of the multi-scalar
drought indices and variables considered in the analysis for each tree species respectively.

Figure 6. Box plots showing the most correlated timescale found for ring-width indices (TRWi, (a)),
NDVI max (b), NDVI annual (c), and the most correlated drought index. The solid black line
corresponds to the median, green asterisks mark the means. Species’ codes correspond to those
listed in Table 1.

Figure 7 illustrates the relationship between the average annual hydro-climatic balance for
hardwoods and coniferous species and the correlation found between the most correlated drought
index and each of the three variables. As depicted, most conifer forests were characterized by negative
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annual hydro-climatic balances, while half of hardwood forests, mainly those located in humid and
mountainous regions, showed a positive hydro-climatic balance. Figures S6–S8 summarize this
relationship for each species and variable.

Figure 7. Scatter plots showing the relationship between maximum Pearson correlations found for
SPEI-TRWi, SPEI-NDVImax, SPI-NDVIannual, and the average annual water balance of hardwood
species (right, dark green) and conifers (left, light green). Solid red line corresponds to the fitted lines
of regression models.

4. Discussion

This study addressed the sensitivity of several drought indices to record responses of NDVI
metrics and tree growth to water shortage. In general, we found that multi-scalar drought indices
(e.g., SPI, SPEI) outperform uni-scalar drought indices (PDSIs) in terms of capturing the impacts of
water shortage on forest growth and NDVI metrics. Likewise, this study assesses the performance
of different drought indices to adequately monitor the impact of drought on forests under different
climatic and geographical conditions, and taxonomic origins. Our analysis is based on two promising
datasets covering the IP and the Balearic Islands. The first comprises tree-ring width data from a
dense network of 568 forests for 16 tree species [75]. The second includes a 1.1 km spatial resolution
NDVI dataset that allows for detecting the growth and NDVI signal in each forest stand, reducing the
interferences associated with the non-related vegetation cover [54]. Changes in vegetation due to
adverse environmental conditions have been addressed in the scientific literature from different
methodological perspectives. Tardieu et al. [76] proposed a probabilistic approach based on the genetic
variability to study the adaptive mechanisms of vegetation to uncertain climatic conditions as drought
to contribute to the tolerance of major crops to deal with them. For its part, Almeida et al. [77]
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developed a systematic methodology to study the spectral differences of vegetation, discriminate
between vegetation assemblages, and assess the phenology of plants applying a principal component
analysis to band ratios. They found significant differences in comparison to most traditional approaches
such as the NDVI. Previous studies also examined the links between vegetation activity and drought
events assessing the response of NDVI to drought using drought indices for finding links between
vegetation activity and drought events [78]. Some studies also quantified the impacts of drought on
forest growth using dendrochronological methods and multi-scalar drought indices [10], while others
assessed the relationship between NDVI and tree-ring width data [32,38,79].

However, very few studies have assessed the varying response of vegetation to various drought
indices [48,80,81], considering NDVI and tree-ring width data for different tree species, taxonomic
groups and biogeographical regions.

This study demonstrates that TRWi and NDVI metrics show different responses to multi-scalar
drought indices (Figures S4 and S5), highlighting the different relationship between wood production
and canopy greenness or activity (NPP) with drought. TRWi was more responsive to drought severity
than the NDVI metrics. Similar results have been observed by Gazol et al. [75] for Spain, as they noted
that tree growth is more sensitive to extreme climate events than the above-ground photosynthetic
biomass. They attributed this pattern to: (1) the dependence of leaf and wood formation processes
on water availability, (2) the distortion of NDVI signal as a consequence of the spatial resolution,
and (3) the effect of nearby vegetation. A similar finding was also observed by Aaltonen et al. [82] who
indicated that drought led to a decline in the growth of Scots pine seedlings due to stress. In contrast,
the photosynthetic rates did not decrease due to drought, confirming the physiological adaptations
(e.g., larger root network) to deal with water scarcity. Similarly, McDowell et al. [83] described different
mechanisms to explain mortality caused by drought and water stress. These mechanisms include
biotic stressors, hydraulic failure, and carbon starvation. Additonally, numerous studies confirmed
that—under soil moisture deficit scenarios—forests can maintain their photosynthetic capacity [84],
while dehydration associated with long periods of xylem conductivity loss inevitably can induce tree
dieback [85,86]. Thus, it is acceptable that sensitivity of secondary growth to drought is greater than that
of the photosynthetic activity. It is also important to consider that, albeit with the high dependence of
spectral measurements on the amount of leafy biomass and primary production [41], remotely-sensed
vegetation indices (e.g., NDVI) are limited, given that saturation problems can occur, especially in
regions with high biomass and strong chlorophyll absorption in the red and near-infrared bands [87,88].
This feature may add further uncertainty to the obtained results, particularly at regional scales.

Our findings on the performance of the different drought indices stress the superiority of
multi-scalar indices over the uni-scalar indices. This is clearly evident for the three vegetation indicators
considered in this study. In this context, Bhuyan et al. [80] employed a range of drought indices to
evaluate the connection between drought and tree growth of nine tree species across Europe. In their
comparison of multi-scalar drought indices (i.e., SPI and SPEI) and the self-calibrated PDSI, they found
a good agreement for F. sylvatica forests between the correlation values found for the Palmer index and
the SPEI-SPI at long time scales (>12 months). On the other hand, the SPEI and SPI captured drought
signals in the growth series of all tree species, especially in temperate and cold forests. Our results
suggest that the Z-Index and the PMDI show more significant and higher correlations with TRWi
compared with the PDSI. In this regard, Karl [89] stated that, for some agricultural and forest fires
applications, the Z-Index outperforms PDSI given its competence to respond to short-term moisture
variances. In our case, the highest correlations of the Z-Index were found for TRWi. In their global
assessment, Vicente-Serrano et al. [48] indicated that growth-drought correlations were stronger for
the SPI and SPEI indices than for the PDSI and the Z-Index. They also found that a higher percentage
of forests from different biomes across the world correlated better with the SPEI than with the SPI.
For its part, Bachmair et al. [50] assessed the relationship between meteorological indicators and
forests in Europe, suggesting slight differences between the SPEI and SPI. Nonetheless, they noted



Forests 2018, 9, 524 14 of 20

that—at shorter time scales—the SPEI shows a stronger response in the forests of southern Europe,
a result that is in agreement with the findings of our study.

Our findings also demonstrate that the strength of correlations and timing response to drought
vary spatially depending on the species and climatic conditions. Specifically, hardwood species under
moist climate in Northern Spain are less correlated with drought indices than the remaining species.
The deciduous species (e.g., Fagus sylvatica, Quercus petraea, Quercus pyrenaica, and Quercus robur) were,
however, more sensitive to drought at short (1–3 months) and medium time scales than most of
evergreen coniferous trees, particularly in the dry eastern IP under Mediterranean climate that
responded to longer time scales (e.g., Pinus halepensis). This entails the resilience capacity of the
species to endure with droughts. Gazol et al. [75] found that the same pine species inhabiting southern
and eastern dry regions in the IP showed a low resistance to drought and a high post-drought recovery
capacity. In semiarid areas, soil water availability is the main constraint for forest growth [72].
This dependence on moisture deficit at medium to longer temporal scales was also found by
Rimkus et al. [78] for the Baltic region and Quiring and Ganesh [90] for Texas (USA).

Overall, species growing under humid climate conditions present a weaker correlation with
drought indices. Nonetheless, these species are most sensitive to extreme or prolonged drought events,
due to the absence of resilience mechanisms to reduce the damage caused by severe water shortage [91],
although they can show high resistance to drought in terms of growth loss [75]. In these humid
regions, precipitation seems to be the main limiting factor, given the stronger response of SPI to NDVI
cumulative annual series (NDVI annual), compared to drought indices that account for precipitation as
well as atmospheric evaporative demand (i.e., SPEI) [40]. Furthermore, vegetation from humid regions
may respond in a different manner to mild droughts, as suggest by Zhang et al. [92]. This behavior
can be interpreted within a context where temperature rise and low cloudiness could increase the
incoming photosynthetically-active radiation simultaneously with increased evapotranspiration.

Interestingly, the response of species to drought differs among species belonging of the same
genus, and also between sites in the same species, indicating the relevance of local site climatic
and soil conditions. Thus, some species dominating in cold and continental mountainous areas
(e.g., Pinus sylvestris and Pinus uncinata) tend to respond to shorter temporal scales because of
their higher dependence on water availability [93]. In contrast, Pinus halepensis and Pinus nigra,
which are dominant in dry regions, are less sensitive to moisture deficit, especially during prolonged
droughts [94].

In addition, the response of forests to drought indices shows a strong seasonality. For tree-ring
growth, moisture conditions during summer, especially in July and August, are determinant of wood
formation. On the other hand, for the NDVI (max and annual), late spring months (April and May)
are more relevant. The higher sensitivity of wood formation to summer water availability is probably
related to phenological patterns of each species [95]. A similar pattern was observed over arid and
semi-arid regions of Mongolia and China [92]. Even if spring droughts may lead to severe impacts,
these impacts may be lagged to subsequent months, leading to photosynthesis reduction as well as
accelerated respiration rates in summer. All these factors together reduced the annual net carbon
uptake and, thus, wood formation [96].

5. Conclusions

To sum up, our study reflects some key findings:

1. The multi-scalar drought indices (e.g., SPEI, SPI, and SPDI) perform better than uni-scalar indices
(e.g., PDSI) to identify drought impacts on forests for different species.

2. Among the multi-scalar indices, SPEI and SPI correlate better with TRWi and NDVI than the
SPDI for most species.

3. Albeit with the few differences in the magnitude of correlations between the SPEI and SPI,
our results suggest a major role of the atmospheric evaporative demand in drought severity
across forests located in dry Mediterranean areas.
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4. Droughts are more prone to impact forest secondary growth (TRWi) during summertime,
and annual production and greenness (NDVI) during springtime.

5. The response of the forests to drought is mainly driven by short time scales (1–3 months) in
humid-temperate hardwood forests, compared to long to medium (>4 months) time scales in
warm-dry conifer forests.

6. Tree-ring growth seems a more reliable indicator of the response of forests to drought, due to its
higher association with drought indices.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/9/524/s1,
Figure S1. Box plots showing the maximum Pearson correlation coefficients computed between NDVI annual (a,f),
ring-width indices (TRWi (b,d), and NDVImax (c,e), and the multi-scalar drought indices (SPEI, SPI, and SPDI),
Figure S2. Box plots showing the maximum partial Pearson correlation coefficients found between TRWi (b,d),
NDVI max (c,e), NDVI annual (a,f), and the multi-scalar drought indices. Figure S3. Box plots showing the most
correlated time-scale found for TRWi (b,d), NDVI max (c,e), NDVI annual (a,f), and the multi-scalar drought
indices. Figure S4. Scatterplots showing the maximum Pearson correlation coefficients found for SPEI-TRWi and
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Abstract. Drought is a major driver of vegetation activ-
ity in Spain, with significant impacts on crop yield, forest
growth, and the occurrence of forest fires. Nonetheless, the
sensitivity of vegetation to drought conditions differs largely
amongst vegetation types and climates. We used a high-
resolution (1.1 km) spatial dataset of the normalized differ-
ence vegetation index (NDVI) for the whole of Spain span-
ning the period from 1981 to 2015, combined with a dataset
of the standardized precipitation evapotranspiration index
(SPEI) to assess the sensitivity of vegetation types to drought
across Spain. Specifically, this study explores the drought
timescales at which vegetation activity shows its highest re-
sponse to drought severity at different moments of the year.
Results demonstrate that – over large areas of Spain – veg-
etation activity is controlled largely by the interannual vari-
ability of drought. More than 90 % of the land areas exhib-
ited statistically significant positive correlations between the
NDVI and the SPEI during dry summers (JJA). Neverthe-
less, there are some considerable spatio-temporal variations,
which can be linked to differences in land cover and arid-
ity conditions. In comparison to other climatic regions across
Spain, results indicate that vegetation types located in arid re-
gions showed the strongest response to drought. Importantly,
this study stresses that the timescale at which drought is as-
sessed is a dominant factor in understanding the different re-
sponses of vegetation activity to drought.

1 Introduction

Drought is one of the major hydroclimatic hazards impact-
ing land surface fluxes (Baldocchi et al., 2004; Fischer et al.,
2007; Hirschi et al., 2011), vegetation respiration (Ciais et
al., 2005), net primary production (Reichstein et al., 2007;
Zhao and Running, 2010), primary and secondary forest
growth (Allen et al., 2015), and crop yield (Lobell et al.,
2015; Asseng et al., 2015). Recently, numerous studies sug-
gested an accelerated impact of drought on vegetation activ-
ity and forest mortality under different environmental condi-
tions (Allen et al., 2010, 2015; Breshears et al., 2005) with a
reduction in vegetation activity and higher rates of tree decay
(e.g. Carnicer et al., 2011; Restaino et al., 2016). Neverthe-
less, a comprehensive assessment of the impacts of drought
on vegetation activity is a challenging task. This is particu-
larly because data on forest conditions and growth are partial,
spatially sparse, and restricted to a small number of sampled
forests (Grissino-Mayer and Fritts, 1997). Furthermore, the
temporal resolution of forest data is insufficient to provide
deep insights into the impacts of drought on vegetation activ-
ity (e.g. the official forest inventories; Jenkins et al., 2003).
In addition to these challenges, the spatial and temporal data
on crops are often limited, as they are mostly aggregated to
administrative levels and provided at the annual scale, with
minor information on vegetation activity across the different
periods of the year (FAO, 2018). To handle these limitations,
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numerous studies have alternatively employed the available
remotely sensed data to assess the impacts of drought on veg-
etation activity (e.g. Ji and Peters, 2003; Wan et al., 2004;
Rhee et al., 2010; Zhao et al., 2017).

Several space-based products allow for quantifying vege-
tation conditions, given that active vegetation responds dis-
similarly to the electromagnetic radiation received in the vis-
ible and near-infrared parts of the vegetation spectrum (Kni-
pling, 1970). As such, with the available spectral information
recorded by sensors on board satellite platforms, it is possible
to calculate vegetation indices and accordingly assess vege-
tation activity (Tucker, 1979). In this context, several studies
have already employed vegetation indices not only to develop
drought-related metrics (e.g. Kogan, 1997; Mu et al., 2013),
but to determine the impacts of drought on vegetation con-
ditions as well (García et al., 2010; Vicente-Serrano et al.,
2013; Zhang et al., 2017). An inspection of these studies re-
veals that drought impacts can be characterized using vege-
tation indices, albeit with a different response of vegetation
dynamics as a function of a wide-range of factors, includ-
ing – among others – vegetation type, bioclimatic conditions,
and drought severity (Bhuiyan et al., 2006; Vicente-Serrano,
2007; Quiring and Ganesh, 2010; Ivits et al., 2014).

Given the high interannual variability of precipitation,
combined with the prevailing semi-arid conditions across
vast areas of the territory, Spain has suffered from frequent,
intense, and severe drought episodes during the past decades
(Vicente-Serrano, 2006). Nonetheless, in the era of tem-
perature rise, the observed increase in atmospheric evapo-
rative demand (AED) during the last decades has acceler-
ated the severity of droughts (Vicente-Serrano et al., 2014c),
in comparison to the severity caused only by precipitation
deficits (Vicente-Serrano et al., 2014b; González-Hidalgo et
al., 2018). Over Spain, the hydrological and socio-economic
impacts of droughts are well-documented. Hydrologically,
droughts are often associated with a decrease in streamflow
and reservoir storages (Lorenzo-Lacruz et al., 2010, 2013).
The impacts of drought can extend further to crops, leading
to crop failure due to deficit in irrigation water (Iglesias et
al., 2003), and even in arable unirrigated lands (Austin et al.,
1998; Páscoa et al., 2017). Over Spain, numerous investi-
gations also highlighted the adverse impacts of drought on
forest growth (e.g. Camarero et al., 2015; Gazol et al., 2018;
Peña-Gallardo et al., 2018a) and forest fires (Hill et al., 2008;
Lasanta et al., 2017; Pausas, 2004; Pausas and Fernández-
Muñoz, 2012).

Albeit with these adverse drought-driven impacts, there is
a lack of comprehensive studies that assess the impacts of
drought on vegetation activity over the entire Spanish ter-
ritory, with a satisfactorily temporal coverage. While nu-
merous studies employed remotely sensed imagery and veg-
etation indices to analyse spatial and temporal variability
and trends in vegetation activity over Spain (e.g. del Bar-
rio et al., 2010; Julien et al., 2011; Stellmes et al., 2013),
few attempts have been made to link the temporal dy-

namics of satellite-derived vegetation activity with climate
variability and drought evolution (e.g. Vicente-Serrano et
al., 2006; Udelhoven et al., 2009; Gouveia et al., 2012;
Mühlbauer et al., 2016). An example is González-Alonso
and Casanova (1997), who analysed the spatial distribution
of droughts in 1994 and 1995 over Spain, concluding that
the most affected areas are semi-arid regions. In their com-
parison of the MODIS normalized difference vegetation in-
dex (NDVI) data and the standardized precipitation index
(SPI) over Spain, García-Haro et al. (2014) indicated that
the response of vegetation dynamics to climate variability
is highly variable, according to the regional climate condi-
tions, vegetation community, and growth stages. A similar
finding was also confirmed by Vicente-Serrano (2007) and
Contreras and Hunink (2015) in their assessment of the re-
sponse of NDVI to drought in semi-arid regions of northeast
and southeast Spain, respectively. With these comprehensive
efforts, a detailed spatial assessment of the links between
droughts and vegetation activity, which covers a long time
period (decades), is highly desired for Spain to explore the
differences in the response of vegetation activity to drought
under different environments with various land cover and
vegetation types.

The overriding objectives of this study are (i) to deter-
mine the possible differences in the response of vegetation
activity to drought over Spain, as a function of the different
land cover types and climatic conditions, and (ii) to explore
the drought timescales at which vegetation activity highly
responds to drought severity. An innovative aspect of this
study is that it provides – for the first time – a compre-
hensive assessment of the response of vegetation activity
to drought using a multidecadal (1981–2015) high-spatial-
resolution (1.1 km) NDVI dataset over the study region.

2 Data and methods

2.1 Datasets

2.1.1 NDVI data

Globally, there are several NDVI datasets, which have been
widely used to analyse NDVI variability and trends (e.g.
Slayback et al., 2003; Herrmann et al., 2005; Anyamba and
Tucker, 2005) and to assess the links between NDVI and
climate variability and drought (e.g. Dardel et al., 2014;
Vicente-Serrano et al., 2015; Gouveia et al., 2016). Amongst
these global datasets, the most widely used are those de-
rived from the Advanced Very High Resolution Radiometer
(AVHRR) sensor on board the NOAA satellites and those
retrieved from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) data. Both products have been widely
employed to evaluate the possible influence of drought on
vegetation dynamics in different regions worldwide (e.g.
Tucker et al., 2005; Gu et al., 2007; Sona et al., 2012; Pin-
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zon and Tucker, 2014; Ma et al., 2015). While the Global
Inventory Modeling and Mapping Studies (GIMMS) dataset
from NOAA AVHRR is available at a semi-monthly tempo-
ral resolution for the period from 1981 onwards (Tucker et
al., 2005; Pinzon and Tucker, 2014), its spatial resolution is
quite low (64 km2), which makes it difficult to capture the
high spatial variability of vegetation cover over Spain. How-
ever, the NDVI dataset derived from MODIS dates back only
to 2001 (Huete et al., 2002), which is insufficient to give in-
sights into the long-term response of vegetation activity to
drought. To overcome these spatial and temporal limitations,
our decision was made to employ a recently developed high-
resolution spatial NDVI dataset (Sp_1Km_NDVI), which is
available at grid intervals of 1.1 km, spanning the period
from 1981 onwards. In accordance with the GIMMS dataset,
Sp_1Km_NDVI is available at a semi-monthly temporal res-
olution. This dataset has already been validated (Vicente-
Serrano et al., 2018), showing high performance in compari-
son to other available NDVI datasets. As such, it can be used
– with confidence – to provide a multidecadal assessment of
NDVI variability at high spatial resolution, especially in ar-
eas of highly variable vegetation. Herein, it is noteworthy to
indicate that the data from the Sp_1Km_NDVI dataset was
standardized (sNDVI), so that each series has an average
equal to zero and a standard deviation equal to 1. This proce-
dure is motivated by the strong seasonality and spatial differ-
ences of vegetation activity over Spain. Following this proce-
dure, the magnitudes of all NDVI time series are comparable
over space and time. To accomplish this task, the data were
fitted to a log-logistic distribution, which shows better skill
in standardizing environmental variables, in comparison to
other statistical distributions (Vicente-Serrano and Beguería,
2016).

In order to limit the possible impact of changes in land
cover on the dependency between drought and vegetation
cover, we assumed that strong changes in NDVI can be seen
as an indicator of changes in land cover. As such, those pixels
with strong changes in NDVI during the study period were
excluded from the analysis. These pixels were defined after
an exploratory analysis in which we tested different thresh-
olds. Specifically, we excluded those pixels that exhibited a
decrease in the annual NDVI higher than 0.05 units or an in-
crease higher than 0.15 units between 1981 and 2015. The
spatial distribution of these pixels (not shown here) concurs
well with the areas identified in earlier studies over Spain
in which there was an abrupt modification of the land cover
type: creation of new irrigated lands (Lasanta and Vicente-
Serrano, 2012; Lecina et al., 2010; Stellmes et al., 2013;
Vicente-Serrano et al., 2018), urban expansion (Gallardo and
Martínez-Vega, 2016; Palazón et al., 2016; Serra et al., 2008),
agricultural abandonment (Lasanta et al., 2017), deforesta-
tion (Camarero et al., 2015; Carnicer et al., 2011), reforesta-
tion (Ortigosa et al., 1990), etc. Furthermore, to avoid the
possible influence of spatial autocorrelation, which can occur
in areas with dominant positive changes in NDVI due to ex-

cessive rural exodus and natural revegetation processes (Hill
et al., 2008; Vicente-Serrano et al., 2018), we detrended the
standardized NDVI series by means of a linear model. We
then add the residuals of the linear trend to the average of
NDVI magnitude over the study period. A similar approach
has been adopted in several environmental studies (Olsen et
al., 2013; Xulu et al., 2018; Zhang et al., 2016). Correlations
with the drought dataset were based on the sNDVI.

2.1.2 Drought dataset

Due to its complicated physiological strategies to cope with
water stress, vegetation can show specific and even individ-
ual resistance and vulnerability to drought (Chaves et al.,
2003; Gazol et al., 2017, 2018). As such, it is quite dif-
ficult to directly assess the impacts of drought on vegeta-
tion activity and forest growth. Alternatively, drought indices
can be an appropriate tool to make this assessment, partic-
ularly with their calculation at multiple timescales. These
timescales summarize the accumulated climatic conditions
over different periods, which make drought indices closely
related to impact studies. Overall, to calculate drought in-
dices, we employed data for a set of meteorological variables
(i.e. precipitation, maximum and minimum air temperature,
relative humidity, sunshine duration, and wind speed) from a
recently developed gridded climatic dataset (Vicente-Serrano
et al., 2017). This gridded dataset was developed using a
dense network of quality-controlled and homogenized mete-
orological records. Data are available for the whole Spanish
territory at a spatial resolution of 1.1 km, which is consis-
tent with the resolution of the NDVI dataset (Sect. 2.1.1).
Based on this gridded dataset, we computed the atmospheric
evaporative demand (AED) and the standardized precipi-
tation evapotranspiration index (SPEI). We used the refer-
ence evapotranspiration (ETo) as the most reliable way of
estimating the AED. ETo was calculated using the physi-
cally based FAO-56 Penman–Monteith equation (Allen et
al., 1998). Conversely, the SPEI was computed using pre-
cipitation and ETo data (Vicente-Serrano et al., 2010). The
SPEI is one of the most widely used drought indices and
has thus been employed to quantify drought in a number of
agricultural (e.g. Peña-Gallardo et al., 2018b), environmen-
tal (e.g. Vicente-Serrano et al., 2012; Bachmair et al., 2018),
and socio-economic applications (e.g. Bachmair et al., 2015;
Stagge et al., 2015). The SPEI is advantageous compared to
the Palmer Drought Severity Index (PDSI), as it is calcu-
lated at different timescales. In comparison to the standard-
ized precipitation index (SPI) (McKee et al., 1993), the SPEI
does not account only for precipitation, but it also considers
the contribution of ETo in drought evolution.

In this work, the SPEI was calculated for the common 1-
to 24-month timescales, but here, given the semi-monthly
availability of the data, we calculated the corresponding 1-
to 48-semi-monthly timescales. The preference to use vari-
ous timescales is motivated by our intention to characterize
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the response of different hydrological and environmental sys-
tems to drought. It is well-recognized that natural systems
can show different responses to the timescales of drought
(Vicente-Serrano et al., 2011, 2013). The timescale refers
to the period in which antecedent climate conditions are ac-
cumulated and it allows adaptation of the drought index to
the drought impacts since different hydrological and envi-
ronmental systems show different response sensitivities to
the timescales of climate variability. This has been shown for
hydrological systems (López-Moreno et al., 2013; Barker et
al., 2016), but ecological and agricultural systems also show
strong differences in the response to different timescales
of climatic droughts (Pasho et al., 2011; Peña-Gallardo et
al., 2018b) given different biophysical conditions and the
different strategies of vegetation types to cope with water
stress (Chaves et al., 2003; McDowell et al., 2008), which
are strongly variable in complex Mediterranean ecosystems.
For instance, drought indices can be calculated on flexible
timescales since it is not known a priori the most suitable pe-
riod at which the NDVI responds. Herein, we also detrended
and standardized the semi-monthly SPEI data to be compa-
rable with the de-trended sNDVI.

Finally, we used the CORINE Land Cover for 2000
(https://land.copernicus.eu/pan-european/corine-land-cover,
last access: 21 May 2019) to determine how land cover can
impact the response of NDVI to drought severity. This map
is representative of the main classes of land cover in the
study domain over the period of investigation.

2.2 Statistical analysis

We used the Pearson’s r correlation coefficient to assess the
relationship between the interannual variability of the sNDVI
and SPEI. This association was evaluated independently for
each semi-monthly period of the year. Specifically, we cal-
culated the correlation between the sNDVI for each semi-
monthly period and SPEI recorded in the same period, at
1- and 48-semi-monthly timescales. Significant correlations
were set at p<0.05. Importantly, as the data of the sNDVI
and SPEI were de-trended, the possible impact of serial cor-
relation on the correlation between sNDVI and SPEI is min-
imized, with no spurious correlation effects that can be ex-
pected from the co-occurrence of the trends. Similarly, as the
data were analysed for each semi-monthly period indepen-
dently, our results are free from any seasonality effect. Given
that it is not possible to know a priori the best cumulative
period to explain the response of the vegetation activity to
drought variability, we retained for further analysis the max-
imum correlation, independently of the timescale at which
this is obtained.

Based on the correlation coefficients between the sNDVI
and SPEI in the study domain, we determined the semi-
monthly period of the year and the SPEI timescale at which
the maximum correlation is found. This information was then
used to determine the spatial and seasonal variations accord-

ing to the different land cover categories. Finally, the average
climate conditions over the study domain, including aridity
(precipitation minus ETo) and average temperature, were re-
lated to the timescales at which the maximum correlation be-
tween the sNDVI and SPEI was found.

3 Results

3.1 General influence of drought on the sNDVI

Figure 1 shows an example of the spatial distribution of
the Pearson’s r correlation coefficients calculated between
the sNDVI and the SPEI at the timescales of 1, 3, 6, and
12 months (2, 6, 12 and 24 semi-monthly periods). Results
are shown only for the second semi-monthly period of each
month between April and July. The differential response of
the NDVI to the different timescales of the SPEI is illus-
trated. As depicted, the 6-month timescale was more rel-
evant to vegetation activity in large areas of southwestern
and southeastern Spain during the second half of April. Con-
versely, vegetation activity was more determined by the 12-
month SPEI across the Ebro basin in northeastern Spain. This
stresses the need to consider different drought timescales to
know the climate cumulative period that mostly affects veg-
etation activity. The 6-month and 12-month SPEIs produced
similar results during the second period of May, while the
12-month timescale is more related to vegetation activity in
June and July.

Figure 2 summarizes the maximum correlation between
the sNDVI and the SPEI, providing insights into the dif-
ferential response of the NDVI to drought. It can be noted
that there are clear seasonal and spatial differences in the re-
sponse of sNDVI to the SPEI. The sNDVI is more related
to the SPEI during the warm season (MJJA). In contrast, the
response of the sNDVI to drought is less pronounced from
September to April, albeit with some exceptions. One ex-
ample is the response of vegetation to drought alongside the
southeastern Mediterranean coastland, where the correlation
between sNDVI and SPEI is almost high all year. Table 1
summarizes the percentage of the total area exhibiting sig-
nificant or non-significant correlations over Spain during the
different semi-monthly periods. Positive (lower sNDVI with
drought) and statistically significant correlations are domi-
nant across the entire territory, but with a seasonal compo-
nent. In particular, a higher percentage of the territory shows
positive and significant correlations during the warm season
(MJJA). From the middle of May to middle of September,
more than 80 % of the study domain shows positive and sig-
nificant correlations between the sNDVI and the SPEI. A
similar finding is also found between the middle of June and
the beginning of August. Figure 3 summarizes the average
correlations between the SPEI and sNDVI. As illustrated,
there is a gradual increase in the response of the sNDVI to
the SPEI from the beginning of May to the end of July, when
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Figure 1. Spatial distribution of the Pearson’s r correlation coefficient calculated between the sNDVI and different SPEI timescales for
different semi-monthly periods.

the maximum average correlation is recorded. In contrast, the
correlations between the SPEI and sNDVI decrease progres-
sively from August to December.

The response of the sNDVI to different timescales of the
SPEI and seasons is quite complex. Figure 4 shows the spa-
tial distribution of the SPEI timescale at which the maxi-
mum correlation was found for each one of the 24 semi-
monthly periods of the year. It can be noted that there are
considerable seasonal and spatial differences. Nonetheless,
these differences are masked with the estimated average val-
ues of the SPEI timescale recorded for the semi-monthly pe-
riods (Fig. 5), which are less variable (oscillating between
18 and 22 semi-monthly periods – 9–11 months) throughout
the year. In general, the areas and periods with higher cor-
relations are recorded at 7- and 24-semi-monthly timescales
(3–12 months).

3.2 Land cover differences

There are differences in the magnitude and seasonality of
the Pearson’s r correlation coefficients among all land cover
types. Figure 6 shows the average and standard error of the

mean of the maximum Pearson’s r coefficients between the
sNDVI and SPEI for the different land cover types and the
24 semi-monthly periods. The magnitudes of correlation vary
considerably, as a function of land cover type, as well as
the period of the year in which the highest correlations are
recorded. The unirrigated arable lands show a peak of sig-
nificant correlation between April and June. However, this
correlation decreases towards the end of the year. The ma-
jority of this land cover shows positive and significant corre-
lations between May and September (Supplement Table S1),
with percentages almost close to 100 %. Conversely, irrigated
lands do not show such a strong response to drought during
the warm season. Even with the presence of a seasonal pat-
tern, it is less pronounced than the one observed for unirri-
gated arable lands. Overall, irrigated areas are characterized
by positive and significant correlations between sNDVI and
SPEI during summertime (Table S2). Similarly, vineyards
show a clear seasonal pattern, albeit with a peak of maxi-
mum correlations during the late summer (July to August)
and early autumn (September to October) (Table S3). Con-
versely, olive groves show the highest correlation between
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Figure 2. Spatial distribution of the maximum correlation between the sNDVI and the SPEI during the different semi-monthly periods.

Figure 3. Spatial average and standard error of the Pearson’s r cor-
relation coefficient between the sNDVI and SPEI time series.

the sNDVI and SPEI during the second half of May and in
October, suggesting a quasi-bimodal response of the NDVI
to drought. This pattern is also revealed in the percentage of
the surface area with significant correlations (Table S4). In
the same context, the areas of natural vegetation exhibit their
maximum correlation between the sNDVI and SPEI during
summer months. The highest correlations are found in July
and August for the forest types, compared to earlier June for
the natural grasslands and the areas of sclerophyllous vegeta-
tion. Conversely, the mixed forests tend to show lower corre-
lations than broad-leaved and coniferous forests. A quick in-
spection of all these types of land cover indicates that the cor-

relations between the sNDVI and SPEI are generally positive
and significant during summer months (Tables S5 to S11).

Large differences across vegetation types were found for
the SPEI timescales at which maximum correlations between
sNDVI and the SPEI are found (Fig. 7). For example, for
unirrigated arable lands, the maximum correlation between
SPEI and sNDVI is found for timescales between 11 and
21 semi-monthly periods. This indicates that crops in May–
June (the period in which higher correlations are recorded)
respond mostly to the climate conditions recorded between
June and December of the preceding year. Irrigated lands
show a clear seasonal pattern, as maximum correlations are
recorded at timescales between 12 and 18 semi-monthly pe-
riods (i.e. 6 to 9 months), mainly between November and
May. Conversely, the maximum correlations between sNDVI
and SPEI during summer are found for timescales between
25 and 28 semi-monthly periods. Similar to irrigated lands,
vineyards show a strong seasonality, responding to longer
timescales at the end of summertime. In contrast, natu-
ral vegetation areas show a less seasonal response to SPEI
timescales, which mostly impact the interannual variability
of sNDVI. The SPEI timescales, at which the maximum cor-
relation is found between sNDVI and SPEI, vary from 20
semi-monthly periods during the warm season (MJJAS) to 30
semi-monthly periods during the cold season (ONDJFMA).
This finding is evident for all forest types and areas of scle-
rophyllous vegetation and mixed wood–scrub. The only ex-
ception corresponds to natural grasslands, which show a re-
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Figure 4. Spatial distribution of the SPEI timescales at which the maximum correlation between the sNDVI and SPEI is found for each one
of the semi-monthly periods.

Figure 5. Average and standard error of the SPEI timescale at
which the maximum Pearson’s r correlation coefficient between the
sNDVI and SPEI is found.

sponse to shorter SPEI timescales (i.e. 20 semi-monthly pe-
riods in winter and 15 in spring and early summer).

3.3 Influence of average climatic conditions

In addition to the impact of the timescale at which drought
is quantified, the response of vegetation activity to drought
can also be closely related to the prevailing climatic condi-
tions. Figure 8 summarizes the spatial correlation between
aridity (P-ETo) and the maximum correlation between the
sNDVI and SPEI. For most of the semi-monthly periods of

the year aridity is negatively correlated with the maximum
correlation between sNDVI and SPEI, indicating that veg-
etation activity at arid sites is more responsive to drought
variability. This correlation is more pronounced for the pe-
riod between December and June. In contrast, this negative
association becomes weaker and statistically non-significant
during warmer months (July to August). Figure 9 illustrates
the spatial correlation between mean air temperature and the
maximum correlation between the sNDVI and SPEI. Results
demonstrate similar results to those found for aridity, with
a general positive and significant correlation from March to
June, followed by a non-significant and weak correlation dur-
ing summer months.

Nonetheless, these general patterns vary largely as a func-
tion of land cover type (Supplement Figs. S1 to S11). For
example, in unirrigated arable lands, there is strong nega-
tive correlation between aridity and the sNDVI–SPEI max-
imum correlation from March to May: a period that wit-
nesses the peak of vegetation activity in this land cover
type. This also coincides with the period of the highest av-
erage correlations between the sNDVI and SPEI. Taken to-
gether, this demonstrates that unirrigated arable lands lo-
cated in the most arid areas are more sensitive to drought
variability than those located in humid regions. As opposed
to unirrigated arable lands, the correlations with aridity are
found to be statistically non-significant in all periods of the
year for irrigated lands, vineyards, and olive groves. Nev-
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Figure 6. Average and standard error of the Pearson’s r correlation coefficient between the sNDVI and SPEI for the different land cover
types.

ertheless, for the different natural vegetation categories, the
correlations are negative and statistically significant during
large periods. The mixed agricultural–natural vegetation ar-
eas show a significant correlation between October and July,
with stronger association at the beginning of the summer sea-
son. Broadleaved and coniferous forests, scrub, and pasture-
lands also show a negative relationship between the spatial
patterns of the sNDVI–SPEI correlations and aridity.

As depicted in Fig. 9, the relationship between the sNDVI–
SPEI correlation and air temperature shows that the response
of vegetation activity to drought is modulated by air tem-
perature during springtime. This implies that warmer areas
are those in which the sNDVI is more controlled by drought.
A contradictory pattern is found during warmer months, in
which the role of air temperature in modulating the impact
of drought on vegetation activity is minimized. The relation-
ships between air temperature and the NDVI–SPEI correla-

tion vary among the different land cover types (Figs. S12
to S22). For example, in unirrigated arable lands, the pos-
itive and statistically significant correlation is found in the
period from March to May, indicating that the response of
the sNDVI to SPEI tends to coincide spatially with areas of
warmer conditions. As observed for aridity, the relationship
between the sNDVI and SPEI in irrigated lands is less asso-
ciated with the spatial patterns of air temperature. A similar
pattern is recorded for vineyards and olive groves. Neverthe-
less, the areas of natural vegetation show a clear relationship
between air temperature and the sNDVI–SPEI correlations.
In the mixed agriculture and natural vegetation areas, we
found a statistically significant positive association between
the sNDVI and SPEI from October to May. Conversely, this
association is less evident during summer months. This gen-
eral association during springtime, combined with the lack
of association during summertime, can also be seen for other

Nat. Hazards Earth Syst. Sci., 19, 1189–1213, 2019 www.nat-hazards-earth-syst-sci.net/19/1189/2019/



S. M. Vicente-Serrano et al.: A high-resolution spatial assessment of the impacts 1197

Figure 7. Average and standard error of the SPEI timescale at which the maximum Pearson’s r correlation coefficient was found between
the sNDVI and SPEI for the different land cover types.

natural vegetation types such as broad-leaved and coniferous
forests, natural grasslands, sclerophyllous vegetation, and
mixed wood–scrub.

We also analysed the dependency between climatic con-
ditions (i.e. aridity and air temperature) and the SPEI
timescale(s) at which the maximum correlation between the
sNDVI and SPEI is recorded. Figure 10 shows the values of
aridity corresponding to SPEI timescales at which the max-
imum correlation between the sNDVI and SPEI is found
for each semi-monthly period. The different box plots indi-
cate complex patterns, which are quite difficult to interpret.
Overall, less arid areas show stronger correlations at longer
timescales (25–42 semi-monthly periods) during springtime.
In the same context, the regions with maximum correla-
tions at short timescales (1–6 months) tend to be located
in less arid regions that record their maximum correlations
at timescales between 7 and 24 semi-monthly periods. This
suggests that the most arid areas mostly respond to the SPEI

timescales between 6 and 12 months, compared to short (1–
3 months) or long (> 12 months) SPEI timescales in more
humid regions. In contrast, during the summer season, the in-
terannual variability of the sNDVI in the arid areas is mostly
determined by the SPEI recorded at timescales higher than
6 months (12 semi-monthly periods), while responding to
short SPEI timescales (< 3 months) over the most humid re-
gions.

Also, we found links between the spatial distribution of air
temperature and the SPEI timescales at which maximum cor-
relation between the sNDVI and SPEI is recorded (Fig. 11).
In early spring, short SPEI timescales dominate in warmer
areas, compared to long SPEI timescales in colder regions.
A contradictory pattern is observed from June to September,
with a dominance of shorter SPEI timescales in colder areas
and longer SPEI timescales in warmer regions.

The spatial distribution of all land cover types, after ex-
cluding irrigated lands in which the anthropogenic factors
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Figure 8.

dominate, is illustrated in Fig. 12. Mixed forests are located
in the most humid areas, while vineyards, olive groves, unir-
rigated arable lands, and the sclerophyllous natural vegeta-
tion are distributed at the most arid sites. Nevertheless, there
is a gradient of these land cover types in terms of their re-
sponse to drought, as those types located under more arid
conditions show a stronger response of vegetation activity to
drought than those located in humid environments. For ex-
ample, the mixed forests show lower correlations than crop
types and other vegetation areas. This pattern is more evident
during the different semi-monthly periods, albeit with more
differences during spring and autumn. In summer, these dif-
ferences are much smaller between land cover categories, ir-
respective of aridity conditions.

There are also differences in the average SPEI timescale
at which the maximum sNDVI–SPEI correlation is obtained
(Fig. 13). However, these differences are complex, with no-
ticeable seasonal differences in terms of the relationship be-
tween climate aridity and land cover types. In spring and late
autumn, land cover types located in more arid conditions tend
to respond to shorter SPEI timescales than those located in

more humid areas. This pattern can be seen in late summer
and early autumn, in which the most arid land cover types
(e.g. vineyards and olive groves) tend to respond at longer
SPEI timescales, compared to forest types (mostly the mixed
forests), which are usually located under more humid condi-
tions.

4 Discussion

This study assesses the response of vegetation activity to
drought in Spain using a high-resolution (1.1 km) spatial
NDVI dataset that dates back to 1981 (Vicente-Serrano et
al., 2018). Based on another high-resolution semi-monthly
gridded climatic dataset, drought was quantified using the
standardized precipitation evapotranspiration index (SPEI) at
different timescales (Vicente-Serrano et al., 2017).

Results demonstrate that vegetation activity over large
parts of Spain is closely related to the interannual variabil-
ity of drought. In summer more than 90 % of the study do-
main shows statistically significant positive correlations be-
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Figure 8. Scatterplots showing the relationships between the maximum correlation obtained between the sNDVI and the SPEI and the
climate aridity (precipitation minus ETo). Given the high number of data, the significance of the correlation was obtained using a bootstrap
method. A total of 1000 random samples of 30 data points each were extracted, from which correlations and p values were obtained. The
final significance was assessed by means of the average of the obtained correlation coefficients and p values, which are indicated in the
figure.

tween the NDVI and SPEI. A similar response of the NDVI
to drought is confirmed in earlier studies in different semi-
arid and subhumid regions worldwide, including northeast-
ern Brazil (e.g. Barbosa et al., 2006), the Sahel (e.g. Her-
rmann et al., 2005), central Asia (e.g. Gessner et al., 2013),
Australia (e.g. De Keersmaecker et al., 2017), and California
(e.g. Okin et al., 2018). Albeit with this generalized response,
our results also show noticeable spatial and seasonal differ-
ences in this response. These differences can be linked to
the timescale at which the drought is quantified, in addition
to the impact of other dominant climatic conditions (e.g. air
temperature and aridity).

4.1 The response of vegetation activity to drought
variability

This study stresses that the response of vegetation activity to
drought is more pronounced during the warm season (MJ-

JAS), in which vast areas of the Spanish territory show sta-
tistically significant positive correlation between the sNDVI
and SPEI. This seasonal pattern can be attributed to the
phenology of vegetation under different land cover types.
In the cold season, some areas, such as pastures and non-
permanent broadleaf forests, do not have any vegetation ac-
tivity. Other areas, with coniferous forests, shrubs, and cereal
crops, show a low vegetation activity. As such, irrespective of
the recorded drought conditions, the response of vegetation
to drought would be low during wintertime. This behaviour
is also enhanced by the atmospheric evaporative demand
(AED), which is generally low in winter in Spain (Vicente-
Serrano et al., 2014d), with a lower water demand of vegeta-
tion and accordingly low sensitivity to soil water availability.
Austin et al. (1998) indicated that soil water recharge occurs
mostly during winter months, given the low water consump-
tion by vegetation. However, in spring, vegetation becomes
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Figure 9.

more sensitive to drought due to temperature rise. Accord-
ingly, the photosynthetic activity, which determines NDVI,
is highly controlled by soil water availability (Myneni et al.,
1995). In this study, the positive spatial relationship found
between air temperature and the sNDVI–SPEI correlation re-
inforces this explanation. In spring, we found low correla-
tions between the NDVI and SPEI, even in cold areas. In con-
trast, summer warm temperatures reinforce vegetation activ-
ity, but with some exceptions such as cereal cultivations, dry
pastures, and shrubs. This would explain why the response
of vegetation activity to the SPEI is stronger during summer
in vast areas of Spain.

Also, this study suggests clear seasonal differences in the
response of the NDVI to drought, and in the magnitude of
the correlation between the NDVI and the SPEI, as a func-
tion of the dominant land cover. These differences are con-
firmed at different spatial scales, ranging from regional and
local (e.g. Ivits et al., 2014; Zhao et al., 2015; Gouveia et
al., 2017; Yang et al., 2018) to global (e.g. Vicente-Serrano
et al., 2013), Over Spain, the unirrigated arable lands, natu-
ral grasslands, and sclerophyllous vegetation show an earlier

response to drought, mainly in late spring and early summer.
This response is mainly linked to the vegetation phenology
dominating in these land covers, which usually reach their
maximum activity in late spring to avoid dryness and tem-
perature rise during summer months. The root systems of
herbaceous species are not very deep, so they depend on the
water storage in the most superficial soil layers (Milich and
Weiss, 1997), and they could not survive during the long and
dry summer in which the surface soil layers are mostly de-
pleted (Martínez-Fernández and Ceballos, 2003). This would
explain an earlier and stronger sensitivity to drought also
shown in other semi-arid regions (Liu et al., 2017; Yang et
al., 2018; Bailing et al., 2018). Conversely, maximum cor-
relations between the NDVI and the SPEI are recorded dur-
ing summer months in the forests but also in wood cultiva-
tions like vineyards and olive groves. In this case, the maxi-
mum sensitivity to drought coincides with the maximum air
temperature and atmospheric evaporative demand (Vicente-
Serrano et al., 2014d). This pattern would be indicative of a
different adaptation strategy of trees in comparison to herba-
ceous vegetation, since whilst herbaceous cover would adapt
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Figure 9. Scatterplots showing the relationships between the maximum correlation obtained between the sNDVI and the SPEI and the
average air temperature. Given the high number of points, the significance of correlation was obtained by means of 1000 random samples of
30 cases from which correlations and p values were obtained. The final significance was assessed by means of the average of the obtained
p values.

to the summer dryness generating the seed bank before the
summer (Peco et al., 1998; Russi et al., 1992), the trees and
shrubs would base their adaptation on deeper root systems,
translating the drought sensitivity to the period of highest wa-
ter demand and water limitation.

In addition to the seasonal differences among land cover
types, we have shown that in Spain herbaceous crops show
a higher correlation between the NDVI and the SPEI than
most natural vegetation types (with the exception of the scle-
rophyllous vegetation). This behaviour could be explained
by three different factors: (i) a higher adaptation of natural
vegetation to the characteristic climate of the region where
drought is a frequent phenomenon (Vicente-Serrano, 2006),
(ii) the deeper root systems that allow shrubs and trees to
obtain water from the deep soil, and (iii) cultivated lands
that tend to be typically located in drier areas than natural
vegetation. Different studies showed that the vegetation of
dry environments tends to have a more intense response to

drought than subhumid and humid vegetation (Schultz and
Halpert, 1995; Abrams et al., 1990; Nicholson et al., 1990;
Herrmann et al., 2016). Vicente-Serrano et al. (2013) anal-
ysed the sensitivity of the NDVI in the different biomes at
a global scale and found a spatial gradient in the sensitivity
to drought, which was more important in arid and semi-arid
regions.

4.2 Response to the average climatology

In this study we have shown a control in the response of
the NDVI to drought severity by the climatic aridity. Thus,
there is a significant correlation between the spatial distribu-
tion of the climatic aridity and the sensitivity of the NDVI
to drought, mostly in spring and autumn. This could be ex-
plained because in more humid environments the main lim-
itation to vegetation growth is temperature and radiation
rather than water, so not all the water available would be
used by vegetation reflected in a water surplus as surface
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Figure 10. Box plots showing the climate aridity values, as a function of the SPEI timescales at which the maximum correlation between the
sNDVI and SPEI is recorded.

runoff. This characteristic would make the vegetation less
sensitive to drought in the cold season. Drought indices are
relative metrics in comparison to the long-term climate with
the purpose of making drought severity conditions compa-
rable between areas of very different climate characteris-
tics (Mukherjee et al., 2018). This means that in humid ar-
eas the corresponding absolute precipitation can be suffi-
cient to cover the vegetation water needs although drought
indices provide information on below-average conditions.
Conversely, in arid regions a low value of a drought index
is always representative of limited water availability, which
would explain the closer relationship between the NDVI and
the SPEI.

Here we also explored if the general pattern observed in
humid and semi-arid regions is also affected by the land
cover, and found that the behaviour in the unirrigated arable
lands is the main reason for the global pattern. Herbaceous
crops show that aridity levels have a clear control of the re-
sponse of the NDVI to drought during the period of vegeta-

tion activity. Nevertheless, after the common harvest period
(June) this control by aridity mostly disappears. This is also
observed in the grasslands and in the sclerophyllous vegeta-
tion, and it could be explained by the low vegetation activ-
ity of the herbaceous and shrub species during the summer,
given the phenological strategies to cope with water stress
with the formation of the seeds before the period of dryness
(Chaves et al., 2003). The limiting aridity conditions that
characterize the regions in which these vegetation types grow
would also contribute to explaining this phenomenon. Con-
versely, the forests, both broadleaved and coniferous, also
show a control by aridity in the relationship between the
NDVI and the SPEI during the summer months since these
land cover types show the peak of the vegetation activity dur-
ing this season.

In any case, it is also remarkable that the spatial pattern of
the NDVI sensitivity to drought in forests is less controlled
by aridity during the summer season, curiously the season
in which there are more limiting conditions. This could be
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Figure 11. Box plots showing air temperature values, as a function of the SPEI timescales at which the maximum correlation between the
sNDVI and SPEI is recorded.

explained by the NDVI saturation under high levels of leaf
area index (Carlson and Ripley, 1997) since once the tree
tops are completely foliated the electromagnetic signal is not
sensitive to additional leaf growth. This could explain the
less sensitive response of the forests to drought in compar-
ison to land cover types characterized by lower leaf area
(e.g. shrubs or grasslands). Nevertheless, we do not think
that this phenomenon can totally explain the decreased sen-
sitivity to drought with aridity in summer since the dominant
coniferous and broadleaved forests in Spain are usually not
characterized by a 100 % leaf coverage (Castro-Díez et al.,
1997; Molina and del Campo, 2012), so large signal satura-
tion problems are not expected. Conversely, the ecophysio-
logical strategies of forests to cope with drought may help
explain the observed lower relationship between aridity dur-
ing the summer months. Experimental studies suggested that
the interannual variability of the secondary growth could be
more sensitive to drought than the sensitivity observed by the
photosynthetic activity and the leaf area (Newberry, 2010).

This could be a strategy to optimize the storage of carbohy-
drates, suggesting that forests in dry years would prioritize
the development of an adequate foliar area in relation to the
wood formation in order to maintain respiration and photo-
synthetic processes. Recent studies by Gazol et al. (2018) and
Peña-Gallardo et al. (2018b) confirmed that, irrespective of
forest species, there is a higher sensitivity of tree-ring growth
to drought, compared to the sensitivity of the NDVI. The dif-
ferent spatial and seasonal responses of vegetation activity to
drought in our study domain can also be linked to the dom-
inant forest species and species richness, which have been
evident in numerous studies (e.g. Lloret et al., 2007). More-
over, this might also be attributed to the ecosystem physi-
ological processes, given that vegetation tends to maintain
the same water use efficiency under water stress conditions,
regardless of vegetation types and environmental conditions
(Huxman et al., 2004). This would explain that – indepen-
dently of the aridity conditions – the response of the NDVI
to drought would be similar. Here, we demonstrated that the
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Figure 12. Scatterplots showing the relationship between the mean annual aridity and the maximum correlation found between the sNDVI
and the SPEI in the different land cover types analysed in this study. Vertical and horizontal bars represent one-fourth the standard deviation
around the mean values.
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Figure 13. Scatterplots showing the relationship between the mean annual aridity and the SPEI timescale at which the maximum correlation
is found between the sNDVI and SPEI for the different land cover types. Vertical and horizontal bars represent one-fourth the standard
deviation around the mean values.
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Table 1. Percentage of the total surface area according to the differ-
ent significance categories of Pearson’s r correlations between the
sNDVI and SPEI.

Negative Negative Positive Positive
(p<0.05) (p>0.05) (p>0.05) (p<0.05)

1 Jan 0.3 9.8 41.3 48.6
2 Jan 0.4 8.7 40.2 50.7
1 Feb 0.3 7.5 39.9 52.3
2 Feb 0.1 7.5 39.0 53.4
1 Mar 0.2 8.9 41.6 49.4
2 Mar 0.2 11.3 38.2 50.3
1 Apr 0.0 7.6 34.9 57.5
2 Apr 0.0 3.4 27.0 69.7
1 May 0.0 1.6 19.0 79.4
2 May 0.0 0.9 14.2 84.9
1 Jun 0.0 1.2 10.8 88.0
2 Jun 0.0 0.5 7.4 92.0
1 Jul 0.0 0.3 5.3 94.4
2 Jul 0.0 0.1 4.5 95.4
1 Aug 0.0 0.1 5.9 94.1
2 Aug 0.0 0.2 10.6 89.2
1 Sep 0.0 0.6 14.0 85.4
2 Sep 0.0 0.4 16.9 82.6
1 Oct 0.0 1.5 24.5 74.0
2 Oct 0.0 1.9 31.1 67.0
1 Nov 0.0 4.5 35.6 59.8
2 Nov 0.0 4.8 41.8 53.4
1 Dec 0.0 4.4 38.9 56.7
2 Dec 0.2 5.9 43.1 50.8

response of the NDVI to drought is similar during summer
months, even with the different land cover types and envi-
ronmental conditions.

4.3 The importance of drought timescales

A relevant finding of this study is that the response of the
NDVI is highly dependent on the timescale at which drought
is quantified. Numerous studies indicated that the accumu-
lation of precipitation deficits during different time peri-
ods is essential to determine the influence of drought on
the NDVI (e.g. Malo and Nicholson, 1990; Liu and Ko-
gan, 1996; Lotsch et al., 2003; Ji and Peters, 2003; Wang
et al., 2003). This is simply because soil moisture is im-
pacted largely by precipitation and the atmospheric evapo-
rative demand over previous cumulative periods (Scaini et
al., 2015). Moreover, the different morphological, physio-
logical, and phenological strategies would also explain the
varying response of vegetation types to different drought
timescales. This finding is confirmed in previous works us-
ing NDVI and different timescales of a drought index (e.g.
Ji and Peters, 2003; Vicente-Serrano, 2007), but also us-
ing other variables like tree-ring growth (e.g. Pasho et al.,
2011; Arzac et al., 2016; Vicente-Serrano et al., 2014a).
This study confirms this finding, given that there is a high

spatial diversity in the SPEI timescale at which vegetation
has its maximum correlation with the NDVI. These spatial
variations, combined with strong seasonal differences, are
mainly controlled by the dominant land cover types and arid-
ity conditions. In their global assessment, Vicente-Serrano
et al. (2013) found gradients in the response of the world
biomes to drought, which are driven mainly by the timescale
at which the biome responds to drought in a gradient of
aridity. Again, the response to these different timescales im-
plies not only different vulnerabilities of vegetation to wa-
ter deficits, but also various strategies from plants to cope
with drought. In Spain, we showed that the NDVI responds
mostly to the SPEI at timescales of around 20 semi-monthly
periods (10 months), but with some few seasonal differ-
ences (i.e. shorter timescales in spring and early autumn than
in late summer and autumn). Herein, it is also noteworthy
to indicate that there are differences in this response, as a
function of land cover types. Overall, during the periods of
highest vegetation activity, the herbaceous land covers (e.g.
unirrigated arable lands and grasslands) respond to shorter
SPEI timescales than other forest types. This pattern can be
seen in the context that herbaceous covers are more depen-
dent on the weather conditions recorded during short peri-
ods. These vegetation types could not reach deep soil lev-
els, which are driven by climatic conditions during longer
periods (Changnon and Easterling, 1989; Berg et al., 2017).
In contrast, the tree root systems would access these deeper
levels, having the capacity to buffer the effect of short-term
droughts, albeit with more vulnerability to long droughts that
ultimately would affect deep soil moisture levels. This pat-
tern has been recently observed in southeastern Spain when
comparing herbaceous crops and vineyards (Contreras and
Hunink, 2015). Recently, Okin et al. (2018) linked the dif-
ferent responses to drought timescales between scrubs and
chaparral herbaceous vegetation in California to soil water
depletion at different levels.

Albeit with these general patterns, we also found some
relevant seasonal patterns. For example, irrigated lands re-
sponded to long SPEI timescales (> 15 months) during sum-
mer months, whilst they responded to shorter timescales
(< 7 months) during spring and autumn. This behaviour can
be linked to water management in these areas. Specifically,
during spring months, these areas do not receive irrigation
and accordingly vegetation activity is determined by water
stored in the soil. Conversely, summer irrigation depends
on the water stored in the dense net of reservoirs existing
in Spain; some of them have a multiannual capacity. Wa-
ter availability in the reservoirs usually depends on the cli-
mate conditions recorded during long periods (1 or 2 years)
(López-Moreno et al., 2004; Lorenzo-Lacruz et al., 2010),
which determine water availability for irrigation. This ex-
plains why vegetation activity in irrigated lands depends
on long timescales of drought. Similarly, vineyards and
olive groves respond to long SPEI timescales during sum-
mer. These cultivations are highly resistant to drought stress
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(Quiroga and Iglesias, 2009). However, these adapted cul-
tivations can be sensitive to severe droughts under extreme
summer dryness. In comparison to other natural vegetation,
mixed forests show a response to shorter SPEI timescales.
This could be explained by the low resistance of these forest
species to water deficits (e.g. the different fir species located
in humid mountain areas; Camarero et al., 2011, 2018).

Here, we also showed that climate aridity can partially
explain the response of the NDVI to the different SPEI
timescales. In Spain, the range of the mean aridity recorded
by the mean land cover types is much lower than that ob-
served at the global scale for the world biomes (Vicente-
Serrano et al., 2013). This might explain why there are no
clear patterns in the response of the land cover types to the
aridity gradients and the SPEI timescales at which the maxi-
mum correlation between the NDVI and SPEI is found. Nev-
ertheless, we found some seasonal differences between the
cold and warm seasons. In summer, the NDVI responds to
longer SPEI timescales, as opposed to the most humid forests
that respond to shorter timescales. This stresses that – in
addition to aridity – the degree of vulnerability to different
duration water deficits, which are well-quantified using the
drought timescales, may contribute to explaining the spatial
distribution of the main land cover types across Spain given
different biophysical conditions, but also the different strate-
gies of vegetation types to cope with water stress (Chaves et
al., 2003; McDowell et al., 2008), which are strongly variable
in complex Mediterranean ecosystems.

5 Conclusions

The main conclusions of this study are as follows.

– Vegetation activity over large parts of Spain is closely
related to the interannual variability of drought.

– The response of vegetation activity to drought is more
pronounced during the warm season, which is attributed
to the phenology of vegetation under different land
cover types.

– There are clear seasonal differences in the response of
the NDVI to drought.

– Natural grasslands and sclerophyllous vegetation show
an earlier response to drought.

– There is a control in the response of the NDVI to
drought severity by the climatic aridity, which is par-
tially controlled by the land cover.

– The response of the NDVI is highly dependent on the
timescale at which drought is quantified although there
are differences in this response, as a function of land
cover types.
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Supplementary Table 1:  Percentage of the total surface area in Spain showing positive or negative, 
significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI. Non-

irrigated arable lands.

Negative 
(p < 0.05)

Negative 
(p > 0.05)

Positive (p 
> 0.05)

Positive (p 
< 0.05)

1st Jan 0.1 7.9 47.1 44.9
2nd Jan 0.5 7.8 43.6 48.2
1st Feb 0.2 7.3 43.2 49.3
2sd Feb 0.0 6.1 45.2 48.6
1st Mar 0.0 9.5 48.2 42.2
2sd Mar 0.3 13.0 44.0 42.7
1st Apr 0.0 8.6 35.5 55.9
2sd Apr 0.0 4.7 25.3 69.9
1st May 0.0 1.0 13.7 85.3
2sd May 0.0 0.3 7.2 92.5
1st Jun 0.0 0.1 2.4 97.5
2sd Jun 0.0 0.0 1.3 98.7
1st Jul 0.0 0.0 1.8 98.2
2sd Jul 0.0 0.0 2.3 97.7
1st Aug 0.0 0.0 3.5 96.4
2sd Aug 0.0 0.1 5.6 94.2
1st Sep 0.0 0.2 9.7 90.1
2sd Sep 0.0 0.2 12.7 87.1
1st Oct 0.0 0.5 22.0 77.5
2sd Oct 0.0 1.1 35.9 63.1
1st Nov 0.0 3.1 42.7 54.2
2sd Nov 0.0 3.5 48.5 47.9
1st Dec 0.0 1.9 40.6 57.5
2sd Dec 0.0 4.1 45.8 50.1



Negative
(p < 0.05)

Negative 
(p > 0.05)

Positive (p 
> 0.05)

Positive (p 
< 0.05)

1st Jan 0.0 4.0 32.5 63.5
2nd Jan 0.2 5.1 28.0 66.7
1st Feb 0.3 4.4 27.1 68.2
2sd Feb 0.1 2.8 26.1 71.0
1st Mar 0.0 3.3 31.7 65.0
2sd Mar 0.0 4.4 32.8 62.8
1st Apr 0.0 3.5 30.7 65.8
2sd Apr 0.0 3.0 26.3 70.7
1st May 0.0 2.6 24.7 72.7
2sd May 0.0 1.6 16.9 81.5
1st Jun 0.0 1.0 14.4 84.7
2sd Jun 0.0 0.3 11.0 88.7
1st Jul 0.0 0.3 12.0 87.6
2sd Jul 0.0 0.1 9.8 90.1
1st Aug 0.0 0.2 11.6 88.2
2sd Aug 0.0 0.7 17.2 82.1
1st Sep 0.0 1.1 22.1 76.7
2sd Sep 0.0 0.5 20.8 78.7
1st Oct 0.0 0.8 25.8 73.4
2sd Oct 0.0 2.3 35.5 62.2
1st Nov 0.0 1.8 37.0 61.2
2sd Nov 0.0 2.0 40.6 57.3
1st Dec 0.0 1.1 30.6 68.3
2sd Dec 0.0 2.2 32.3 65.4

Supplementary Table 2:  Percentage of the total surface area in Spain showing positive or negative, 
significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI. Irrigated 

lands



Negative 
(p < 0.05)

Negative 
(p > 0.05)

Positive (p 
> 0.05)

Positive (p 
< 0.05)

1st Jan 0.0 1.6 32.4 66.1
2nd Jan 0.0 1.2 29.3 69.4
1st Feb 0.0 1.1 35.4 63.5
2sd Feb 0.0 0.9 37.0 62.1
1st Mar 0.0 3.8 44.8 51.4
2sd Mar 0.0 6.3 41.2 52.4
1st Apr 0.0 1.0 33.1 65.9
2sd Apr 0.0 0.2 14.1 85.7
1st May 0.0 0.1 9.0 90.9
2sd May 0.0 0.1 4.4 95.5
1st Jun 0.0 0.1 5.3 94.6
2sd Jun 0.0 0.0 1.7 98.3
1st Jul 0.0 0.0 0.9 99.1
2sd Jul 0.0 0.0 0.6 99.4
1st Aug 0.0 0.0 0.8 99.2
2sd Aug 0.0 0.0 1.9 98.1
1st Sep 0.0 0.0 4.1 95.9
2sd Sep 0.0 0.0 2.7 97.3
1st Oct 0.0 0.1 5.0 94.9
2sd Oct 0.0 0.2 11.3 88.5
1st Nov 0.0 0.2 22.7 77.1
2sd Nov 0.0 0.4 40.3 59.4
1st Dec 0.0 0.5 40.1 59.3
2sd Dec 0.0 1.8 45.3 52.9

Supplementary Table 3:  Percentage of the total surface area in Spain showing positive or negative, 
significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI. Vineyards



Negative 
(p < 0.05)

Negative 
(p > 0.05)

Positive (p 
> 0.05)

Positive (p 
< 0.05)

1st Jan 0.0 2.9 43.1 54.0
2nd Jan 0.0 1.6 36.4 61.9
1st Feb 0.0 1.5 31.7 66.8
2sd Feb 0.0 0.6 24.2 75.2
1st Mar 0.0 1.5 28.0 70.5
2sd Mar 0.0 1.5 23.0 75.5
1st Apr 0.0 0.6 11.9 87.5
2sd Apr 0.0 0.2 5.7 94.2
1st May 0.0 0.1 4.6 95.3
2sd May 0.0 0.0 1.2 98.8
1st Jun 0.0 0.0 0.9 99.1
2sd Jun 0.0 0.0 1.7 98.3
1st Jul 0.0 0.0 2.7 97.3
2sd Jul 0.0 0.0 2.6 97.4
1st Aug 0.0 0.0 4.7 95.2
2sd Aug 0.0 0.1 10.9 89.1
1st Sep 0.0 0.1 20.2 79.7
2sd Sep 0.0 0.0 12.6 87.4
1st Oct 0.0 0.0 4.5 95.5
2sd Oct 0.0 0.1 6.8 93.1
1st Nov 0.0 0.2 16.4 83.4
2sd Nov 0.0 0.5 31.2 68.3
1st Dec 0.0 0.5 23.4 76.1
2sd Dec 0.0 1.8 39.6 58.6

Supplementary Table 4: Percentage of the total surface area in Spain showing positive or negative, 
significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI. Olive 

groves.



Negative 
(p < 0.05)

Negative 
(p > 0.05)

Positive (p 
> 0.05)

Positive (p 
< 0.05)

1st Jan 0.0 7.7 39.1 53.1
2nd Jan 0.0 5.7 39.7 54.6
1st Feb 0.0 5.6 39.0 55.3
2sd Feb 0.0 6.6 37.4 55.9
1st Mar 0.0 6.9 38.7 54.4
2sd Mar 0.1 12.3 34.4 53.1
1st Apr 0.0 9.6 34.1 56.3
2sd Apr 0.0 4.0 28.9 67.0
1st May 0.0 0.9 20.5 78.5
2sd May 0.0 0.8 15.8 83.4
1st Jun 0.0 1.6 15.1 83.3
2sd Jun 0.0 0.6 9.5 89.9
1st Jul 0.0 0.1 5.4 94.5
2sd Jul 0.0 0.0 4.2 95.8
1st Aug 0.0 0.0 5.4 94.6
2sd Aug 0.0 0.1 8.8 91.1
1st Sep 0.0 0.6 9.4 89.9
2sd Sep 0.0 0.4 15.6 83.9
1st Oct 0.0 1.0 26.4 72.5
2sd Oct 0.0 1.3 32.1 66.6
1st Nov 0.0 4.5 37.6 57.9
2sd Nov 0.0 4.9 42.2 52.9
1st Dec 0.0 4.1 41.0 54.9
2sd Dec 0.0 4.1 39.9 56.0

Supplementary Table 5: Percentage of the total surface area in Spain showing positive or negative, 
significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI. Mixed 

agriculture/natural vegetation



Negative 
(p < 0.05)

Negative 
(p > 0.05)

Positive (p
> 0.05)

Positive (p 
< 0.05)

1st Jan 0.2 15.9 45.5 38.4
2nd Jan 0.2 12.3 49.5 38.0
1st Feb 0.2 11.3 47.5 41.0
2sd Feb 0.1 13.2 44.3 42.3
1st Mar 0.1 13.6 46.7 39.7
2sd Mar 0.2 17.9 41.8 40.1
1st Apr 0.0 12.6 45.3 42.0
2sd Apr 0.0 5.8 42.5 51.7
1st May 0.0 3.3 33.1 63.5
2sd May 0.0 2.6 29.1 68.3
1st Jun 0.0 4.7 25.2 70.2
2sd Jun 0.0 1.9 18.9 79.2
1st Jul 0.0 1.0 13.5 85.5
2sd Jul 0.0 0.2 11.5 88.4
1st Aug 0.0 0.1 14.1 85.8
2sd Aug 0.0 0.4 21.0 78.6
1st Sep 0.0 1.6 20.9 77.5
2sd Sep 0.0 1.7 28.9 69.5
1st Oct 0.0 4.4 37.2 58.3
2sd Oct 0.0 2.9 39.2 57.9
1st Nov 0.0 7.0 43.6 49.4
2sd Nov 0.0 8.1 47.7 44.2
1st Dec 0.0 9.0 46.0 45.0
2sd Dec 0.1 8.8 51.0 40.1

Supplementary Table 6: Percentage of the total surface area in Spain showing positive or negative, 
significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI. Broad-

leaved forests



Negative 
(p < 0.05)

Negative 
(p > 0.05)

Positive (p 
> 0.05)

Positive (p 
< 0.05)

1st Jan 0.4 15.9 46.0 37.7
2nd Jan 0.6 15.1 47.0 37.3
1st Feb 0.3 11.3 45.2 43.3
2sd Feb 0.2 12.1 45.5 42.2
1st Mar 0.3 14.2 51.1 34.5
2sd Mar 0.2 14.0 48.4 37.3
1st Apr 0.0 10.2 48.7 41.1
2sd Apr 0.0 4.8 42.2 53.0
1st May 0.0 2.9 32.7 64.4
2sd May 0.0 1.4 27.2 71.4
1st Jun 0.0 1.5 19.9 78.6
2sd Jun 0.0 0.8 13.6 85.6
1st Jul 0.0 0.3 9.6 90.0
2sd Jul 0.0 0.1 7.2 92.7
1st Aug 0.0 0.1 8.2 91.7
2sd Aug 0.0 0.5 20.3 79.2
1st Sep 0.0 1.6 26.4 72.0
2sd Sep 0.0 0.9 31.3 67.8
1st Oct 0.0 3.7 37.9 58.3
2sd Oct 0.0 5.6 42.8 51.7
1st Nov 0.1 10.8 47.3 41.8
2sd Nov 0.1 9.5 51.2 39.2
1st Dec 0.1 9.5 48.0 42.3
2sd Dec 0.3 10.8 49.2 39.8

Supplementary Table 7: Percentage of the total surface area in Spain showing positive or negative, 
significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI. Coniferous 

forests



Negative 
(p < 0.05)

Negative 
(p > 0.05)

Positive (p 
> 0.05)

Positive (p 
< 0.05)

1st Jan 0.9 19.6 53.6 25.9
2nd Jan 1.8 18.4 55.6 24.2
1st Feb 1.5 17.2 55.5 25.8
2sd Feb 0.1 17.8 59.8 22.2
1st Mar 0.1 16.4 62.9 20.7
2sd Mar 0.8 20.8 60.1 18.3
1st Apr 0.0 12.7 62.7 24.6
2sd Apr 0.0 5.4 50.4 44.2
1st May 0.0 3.5 39.4 57.0
2sd May 0.0 1.7 31.3 66.9
1st Jun 0.0 2.8 26.0 71.2
2sd Jun 0.0 1.9 20.5 77.6
1st Jul 0.0 0.4 14.4 85.1
2sd Jul 0.0 0.0 9.7 90.2
1st Aug 0.0 0.1 10.6 89.2
2sd Aug 0.0 0.8 21.5 77.6
1st Sep 0.0 0.9 24.8 74.3
2sd Sep 0.0 0.9 27.4 71.7
1st Oct 0.0 4.1 47.2 48.6
2sd Oct 0.0 6.0 52.8 41.2
1st Nov 0.1 13.4 47.3 39.1
2sd Nov 0.1 12.4 57.6 29.9
1st Dec 0.1 11.9 64.8 23.2
2sd Dec 0.2 13.4 61.4 25.0

Supplementary Table 8: Percentage of the total surface area in Spain showing positive or negative, 
significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI. Mixed 

forests



Negative 
(p < 0.05)

Negative 
(p > 0.05)

Positive (p 
> 0.05)

Positive (p 
< 0.05)

1st Jan 1.7 16.2 34.3 47.8
2nd Jan 2.0 13.1 33.2 51.7
1st Feb 1.2 11.5 33.4 54.0
2sd Feb 1.0 11.8 29.5 57.7
1st Mar 1.4 12.2 27.6 58.8
2sd Mar 0.5 13.3 26.5 59.7
1st Apr 0.0 9.1 25.7 65.2
2sd Apr 0.0 2.7 23.2 74.1
1st May 0.0 2.2 16.5 81.3
2sd May 0.0 1.8 13.7 84.4
1st Jun 0.0 2.5 10.7 86.7
2sd Jun 0.0 1.8 7.8 90.4
1st Jul 0.1 1.4 6.5 92.0
2sd Jul 0.0 0.8 6.0 93.1
1st Aug 0.0 0.1 6.8 93.1
2sd Aug 0.0 0.2 10.8 88.9
1st Sep 0.0 0.2 12.4 87.3
2sd Sep 0.0 0.2 13.7 86.0
1st Oct 0.0 1.4 18.9 79.7
2sd Oct 0.0 1.7 22.4 75.9
1st Nov 0.0 6.5 26.7 66.8
2sd Nov 0.2 6.7 32.0 61.1
1st Dec 0.3 7.6 28.7 63.4
2sd Dec 1.3 10.8 36.2 51.8

Supplementary Table 9: Percentage of the total surface area in Spain showing positive or negative, 
significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI. Natural 

grassland



Negative 
(p < 0.05)

Negative 
(p > 0.05)

Positive (p 
> 0.05)

Positive (p 
< 0.05)

1st Jan 0.1 7.8 37.4 54.7
2nd Jan 0.1 6.2 36.9 56.8
1st Feb 0.1 4.3 35.6 60.0
2sd Feb 0.0 4.0 33.1 62.9
1st Mar 0.1 5.0 37.8 57.2
2sd Mar 0.1 5.7 34.2 60.0
1st Apr 0.0 5.0 29.8 65.1
2sd Apr 0.0 1.8 21.5 76.7
1st May 0.0 1.1 15.1 83.8
2sd May 0.0 0.4 9.4 90.2
1st Jun 0.0 0.1 4.0 95.9
2sd Jun 0.0 0.0 1.8 98.1
1st Jul 0.0 0.0 1.2 98.8
2sd Jul 0.0 0.0 1.2 98.8
1st Aug 0.0 0.0 2.2 97.8
2sd Aug 0.0 0.1 5.7 94.2
1st Sep 0.0 0.2 8.8 91.1
2sd Sep 0.0 0.2 10.7 89.2
1st Oct 0.0 0.6 15.8 83.6
2sd Oct 0.0 0.9 21.4 77.8
1st Nov 0.0 3.1 28.6 68.3
2sd Nov 0.0 3.2 33.7 63.2
1st Dec 0.0 2.8 31.5 65.8
2sd Dec 0.0 4.7 37.4 57.8

Supplementary Table 10: Percentage of the total surface area in Spain showing positive or 
negative, significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI.

Sclerophillous vegetation



Negative 
(p < 0.05)

Negative 
(p > 0.05)

Positive (p 
> 0.05)

Positive (p 
< 0.05)

1st Jan 0.1 11.7 44.0 44.1
2nd Jan 0.2 9.9 44.1 45.9
1st Feb 0.1 6.8 43.4 49.6
2sd Feb 0.1 6.5 42.6 50.8
1st Mar 0.1 8.1 45.0 46.9
2sd Mar 0.2 10.1 42.9 46.8
1st Apr 0.0 7.7 40.2 52.1
2sd Apr 0.0 2.9 30.3 66.8
1st May 0.0 1.9 23.1 75.0
2sd May 0.0 0.9 17.4 81.7
1st Jun 0.0 0.8 11.7 87.5
2sd Jun 0.0 0.5 7.3 92.2
1st Jul 0.0 0.1 3.7 96.2
2sd Jul 0.0 0.0 2.6 97.3
1st Aug 0.0 0.0 3.9 96.1
2sd Aug 0.0 0.1 8.9 91.0
1st Sep 0.0 0.3 13.4 86.3
2sd Sep 0.0 0.2 18.9 80.9
1st Oct 0.0 1.5 28.5 70.0
2sd Oct 0.0 2.5 33.0 64.5
1st Nov 0.0 5.3 37.1 57.6
2sd Nov 0.0 4.7 43.3 52.0
1st Dec 0.0 4.5 42.8 52.7
2sd Dec 0.1 7.0 46.8 46.1

Supplementary Table 11: Percentage of the total surface area in Spain showing positive or 
negative, significant or non-significant Pearson’s r correlations between the sNDVI and the SPEI.

Transition wood-scrub.



Supplementary Figure 1: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Non Irrigated arable lands. Given the high number of points the signification of correlation was 

obtained by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed 
by means of the average of the obtained p-values. 



Supplementary Figure 2: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Irrigated lands. Given the high number of points the signification of correlation was obtained by 
means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by means 

of the average of the obtained p-values. 



Supplementary Figure 3: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Vineyeards. Given the high number of points the signification of correlation was obtained by 

means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by means 
of the average of the obtained p-values. 



Supplementary Figure 4: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Olive groves. Given the high number of points the signification of correlation was obtained by 
means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by means 

of the average of the obtained p-values. 



Supplementary Figure 5: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Mixed agriculture/natural vegetation. Given the high number of points the signification of 

correlation was obtained by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final 
signification was assessed by means of the average of the obtained p-values. 



Supplementary Figure 6: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Broad-leaved forests. Given the high number of points the signification of correlation was 

obtained by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed 
by means of the average of the obtained p-values. 



Supplementary Figure 7: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Coniferous forests. Given the high number of points the signification of correlation was obtained 

by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by 
means of the average of the obtained p-values. 



Supplementary Figure 8: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Mixed forests. Given the high number of points the signification of correlation was obtained by 
means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by means 

of the average of the obtained p-values. 



Supplementary Figure 9: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Natural grasslands. Given the high number of points the signification of correlation was obtained 

by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by 
means of the average of the obtained p-values. 



Supplementary Figure 10: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the 
SPEI during the 24 semi-monthly periods of the year. Sclerophillous vegetation. Given the high number of points the signification of correlation 

was obtained by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was 
assessed by means of the average of the obtained p-values. 



Supplementary Figure 11: Relationship between the average aridity (P-ETo) and the maximum correlations obtained between NDVI and the 
SPEI during the 24 semi-monthly periods of the year. Transition wood-scrub. Given the high number of points the signification of correlation 
was obtained by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was 

assessed by means of the average of the obtained p-values. 



Supplementary Figure 12: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Non Irrigated arable lands. Given the high number of points the signification of correlation was 

obtained by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed 
by means of the average of the obtained p-values. 



Supplementary Figure 13: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Irrigated lands. Given the high number of points the signification of correlation was obtained by 
means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by means 

of the average of the obtained p-values. 



Supplementary Figure 14: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Vineyeards. Given the high number of points the signification of correlation was obtained by 

means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by means 
of the average of the obtained p-values. 



Supplementary Figure 15: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Olive groves. Given the high number of points the signification of correlation was obtained by 
means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by means 

of the average of the obtained p-values. 



Supplementary Figure 16: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Mixed agriculture/natural vegetation. Given the high number of points the signification of 

correlation was obtained by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final 
signification was assessed by means of the average of the obtained p-values. 



 Supplementary Figure 17: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Broad-leaved forests. Given the high number of points the signification of correlation was 

obtained by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed 
by means of the average of the obtained p-values. 



 Supplementary Figure 18: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Coniferous forests. Given the high number of points the signification of correlation was obtained 

by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by 
means of the average of the obtained p-values. 



 Supplementary Figure 19: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Mixed forests. Given the high number of points the signification of correlation was obtained by 
means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by means 

of the average of the obtained p-values. 



 Supplementary Figure 20: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Natural grasslands. Given the high number of points the signification of correlation was obtained 

by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed by 
means of the average of the obtained p-values. 



 Supplementary Figure 21: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Sclerophillous vegetation. Given the high number of points the signification of correlation was 

obtained by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed 
by means of the average of the obtained p-values. 



 Supplementary Figure 22: Relationship between the average temperature and the maximum correlations obtained between NDVI and the SPEI 
during the 24 semi-monthly periods of the year. Transition wood-scrub. Given the high number of points the signification of correlation was 

obtained by means of 1000 random samples of 30 cases from which correlations and p-values were obtained. The final signification was assessed 
by means of the average of the obtained p-values.
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Abstract. Drought events are of great importance in most
Mediterranean climate regions because of the diverse and
costly impacts they have in various economic sectors and
on the environment. The effects of this natural hazard on
rainfed crops are particularly evident. In this study the im-
pacts of drought on two representative rainfed crops in Spain
(wheat and barley) were assessed. As the agriculture sector
is vulnerable to climate, it is especially important to iden-
tify the most appropriate tools for monitoring the impact of
the weather on crops, and particularly the impact of drought.
Drought indices are the most effective tool for that purpose.
Various drought indices have been used to assess the influ-
ence of drought on crop yields in Spain, including the Stan-
dardized Precipitation Evapotranspiration Index (SPEI), the
Standardized Precipitation Index (SPI), the Palmer drought
indices (Palmer Drought Severity Index, PDSI; Palmer Z In-
dex, Z Index; Palmer Hydrological Drought Index, PHDI;
Palmer Modified Drought Index, PMDI), and the Standard-
ized Palmer Drought Index (SPDI). Two sets of crop yield
data at different spatial scales and temporal periods were
used in the analysis. The results showed that drought indices
calculated at different timescales (SPI, SPEI) most closely
correlated with crop yield. The results also suggested that
different patterns of yield response to drought occurred de-
pending on the region, period of the year, and the drought
timescale. The differing responses across the country were
related to season and the magnitude of various climate vari-
ables.

1 Introduction

The Mediterranean region is one of the major areas in Eu-
rope likely to be subject to the potential impacts of climate
change. Many semiarid regions of southwestern Europe are
expected to undergo a critical decline in water availability as
a consequence of reduced precipitation and an increase in in-
terannual and intra-annual rainfall variability (IPCC, 2014,
EEA, 2017). It is also expected that future changes in the
precipitation regime, along with a rise in temperature, will
inevitably bring more extreme and severe weather events
(Giorgi and Lionello, 2008; Webber et al., 2018; Wigley,
2009) that will impact ecosystems and economic sectors (As-
seng et al., 2014; Tack et al., 2015). It has been suggested
that precipitation and temperature changes in the western
Mediterranean region will lead to more severe and longer
drought events in coming decades (Alcamo et al., 2007;
Dai, 2011; Forzieri et al., 2016; Giorgi and Lionello, 2008;
Spinoni et al., 2018; Vicente-Serrano et al., 2014). This is
significant because agriculture plays a key role in food sup-
ply; in 2017 it accounted for 2.59 % of GDP in Spain, 1.92 %
in Italy, and 3.53 % in Greece (World Bank, 2017).

The agriculture sector is highly vulnerable to drought, as
it depends directly on water availability (Hanjra and Qureshi,
2010; Meng et al., 2016; Tsakiris and Tigkas, 2007). Al-
though each crop differs in its resilience to water stress (Liu
et al., 2016; Lobell et al., 2011), droughts can cause crop
failure if the weather conditions are adverse during the most
sensitive stage of crop growth (Lobell and Field, 2007). The
adverse impacts of drought have been highlighted in re-
cent severe events, including in 2003 when the agricultural
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and forestry losses from drought in France, Italy, Germany,
Spain, Portugal, and Austria were approximately EUR 13 bil-
lion (Fink et al., 2004; García-Herrera et al., 2010). The most
recent drought, which mostly affected north–central Europe,
caused European farmers to claim agricultural aid because
of the low production that resulted (European Commission,
2018).

For these reasons the vulnerability of agricultural produc-
tion to extreme events and the quantification of drought im-
pacts on crop yields have become a focus of interest. In re-
cent years diverse studies in the Mediterranean region have
assessed these issues from multiple perspectives. For exam-
ple, Capa-Morocho et al. (2016) investigated the link be-
tween seasonal climate forecasts and crop models in Spain,
Loukas and Vasiliades (2004) used a probabilistic approach
to evaluate the spatiotemporal characteristics of drought in
an agricultural plain region in Greece, and Moore and Lo-
bell (2014) estimated the impacts of climate projections on
various crop types across Europe.

Droughts are difficult to measure and quantify (Vicente-
Serrano et al., 2016), and consequently a wide range of
drought indices have been developed to provide tools for
quantifying the effects of drought across different sectors
(Zargar et al., 2011). In this respect, drought indices are the
most widely used method for monitoring drought impacts on
agriculture; examples of their use available in the scientific
literature include that in Europe (Hernandez-Barrera et al.,
2016; Potopová et al., 2016a; Sepulcre-Canto et al., 2012;
Vergni and Todisco, 2011), America (McEvoy et al., 2012;
Quiring and Papakryiakou, 2003), and Asia (Ebrahimpour et
al., 2015; Wang et al., 2016a). However, there is no general
consensus on the most suitable indices for this purpose (Es-
fahanian et al., 2017). Despite the existing literature, very
few studies (Peña-Gallardo et al., 2018a; Tian et al., 2018)
have compared drought indices to identify their appropriate-
ness for monitoring drought impacts on agriculture and for
various crop types.

Among Mediterranean countries, agriculture in Spain is
particularly sensitive to climate because of the low aver-
age precipitation level and its marked interannual variabil-
ity (Vicente-Serrano, 2006). Spain has been subject to mul-
tiple episodes of drought (Domínguez-Castro et al., 2012),
with those in the last century being amongst the most se-
vere to have occurred in Europe (González-Hidalgo et al.,
2018; Vicente-Serrano, 2006). In 2017 the agricultural and
livestock losses caused by drought were estimated to be at
least EUR 3600 million (UPA, 2017), highlighting the need
to establish appropriate tools for monitoring drought impacts
on crops. Recent studies such as that conducted by Ribeiro
et al. (2019) in the Iberian Peninsula stressed the risk of this
region of suffering from yield losses in the context of cli-
mate change. For that purpose, these authors analyzed the
exposure of cereal rainfed crops to drought conditions using
remote sensing information and performing a multi-scalar
drought index.

Information on crop production is commonly limited in
terms of spatial or temporal availability. Recent studies in
Spain have analyzed the impact of climate on various crops
since the early 21st century at national or provincial scales
(Cantelaube et al., 2004; Hernandez-Barrera et al., 2016; Pás-
coa et al., 2016; Ribeiro et al., 2019), but few have used
yield data at finer resolution (García-León et al., 2019). In
this study we compared different drought indices using two
datasets at different spatial scales: provincial information
provided by the national statistical services and a regional
dataset specifically developed for the study. The objectives
of this study were (1) to determine the most appropriate and
functional drought index among four Palmer-related drought
indices (Palmer Drought Severity Index, PDSI; Palmer Hy-
drological Drought Index, PHDI; Palmer Z Index, Z In-
dex; Palmer Modified Drought Index, PMDI) and the Stan-
dardized Precipitation Evapotranspiration Index (SPEI), the
Standardized Precipitation Index (SPI), and the Standardized
Palmer Drought Index (SPDI); (2) to identify the temporal
response of two main herbaceous rainfed crops (wheat and
barley) to drought; and (3) to determine whether there were
common spatial patterns, by comparing the two datasets at
different spatial scales.

2 Methods and datasets

2.1 Crop yield data

The statistical analysis was conducted using an annual
dataset of crop yields for peninsular Spain and the Balearic
Islands at two spatial scales for the two main herba-
ceous rainfed crops (barley and wheat). We obtained
provincial annual yield data from the National Agricul-
tural Statistics Annuaries published by the Spanish Min-
istry of Agriculture, Fishing and Environment (MAPA),
available at https://www.mapa.gob.es/es/estadistica/temas/
publicaciones/anuario-de-estadistica/default.aspx (last ac-
cess: March 2018); these include agricultural statistics since
the early 20th century. We used data from 1962 to 2014
to match climate data that were available for this period.
The Gipuzkoa and Vizcaya provinces were not used in the
analysis at the province scale as wheat has not been culti-
vated there since 1973 and 1989, respectively. We used crop
production data collected by the Encuesta sobre Superficies
y Rendimientos de Cultivos (ESYRCE; Survey on surface
and crop yields), an agrarian yield survey that has been un-
dertaken by the MAPA since 1990. This survey records in-
formation about crop production at parcel scale every year
from a sample of parcels. Yield observations were aggre-
gated to the main spatial unit defined for agricultural dis-
tricts by the MAPA (Fig. 1). As not all territories were in-
cluded in this survey until 1993, we only considered the pe-
riod 1993–2015. Data on barley production are limited in the
ESYRCE database, and the agricultural districts considered
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Figure 1. Location of Spanish autonomous communities (a) and provinces (b) and the distribution of agricultural districts with data available
(yellow) for wheat (c) and barley (d) yields for the period 1993–2015. Areas where rainfed cereal crops are cultivated (Corine Land Cover
2006) are shown in grey.

in this study did not correspond to all the areas where this
crop is cultivated.

For both datasets the unit of measure was the harvested
production per unit of harvested area (kg ha−1); it did not in-
clude any measure of production related to the area of the
crop planted in each province or region. To consider the
total area covered by the crops we used the defined rain-
fed crop delimited area for Spain, derived from the Corine
Land Cover 2000 database (http://centrodedescargas.cnig.
es/CentroDescargas/catalogo.do?Serie=MPPIF, last access:
March 2018).

The spatial resolution of yield data can influence the inter-
pretation of drought impacts on agriculture. Figure 2 shows
a comparison of crop yields for the common period of avail-
able information in both datasets (1993–2014). Overall, the
average production was greater at the agricultural district
scale than at the provincial scale. Tables S1 and S2 (in
the Supplement) summarize the relationships between the
datasets for each province for the available common pe-
riod, based on Pearson’s correlations coefficients for wheat
and barley yields, respectively. It was surprising that both
datasets showed very different temporal variability in crop
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Figure 2. Temporal series of wheat (a) and barley (b) yields for the provincial data and the aggregated agricultural district data at the province
scale for the common period 1993–2014. The solid black line shows the median, and the blue dot shows the mean.

yields in the analyzed provinces. Wheat yields showed good
agreement and highly significant correlations between both
datasets in provinces including Ávila (r = 0.77), Barcelona
(r = 0.69), Burgos (r = 0.82), Cuenca (r = 0.86), Guadala-
jara (r = 0.87), León (r = 0.69), Palencia (r = 0.73), Sala-
manca (r = 0.87), Segovia (r = 0.94), Teruel (r = 0.83),
Valladolid (r = 0.92), and Zamora (r = 0.75), while in other
provinces including Castellón, Málaga, Murcia, and Navarra
the correlations were nonsignificant or negative. Thus, the
national statistics for these districts were unreliable. For bar-
ley yields the available regional data were more limited, but
similar relationships with good agreement and more highly
significant correlations were found among the datasets for
the provinces where wheat was also cultivated, including
Cáceres (r = 0.48), Cuenca (r = 0.88), Granada (r = 0.51),
Guadalajara (r = 0.86), La Rioja (r = 0.76), and Tarragona
(r = 0.88); however, for Sevilla the correlation was negative
and significant (r = −0.35).

Mechanization and innovation in agriculture have in-
creased in the last century, resulting in a trend of increased
yields (Lobell and Field, 2007), which is also evident in data
for Spain. To remove bias introduced by non-climate factors,
and to enable comparison of yields between the two crop
types, the original series were transformed to standardized
yield residuals series (SYRS) using the following quadratic
polynomial equation:

SYRS =
yd−µ

σ
,

where yd denotes the residuals of the de-trended yield ob-
tained by fitting a linear regression model, µ is the mean of
the de-trended series, and σ is the standard deviation of the
de-trended yield.

This methodology has been applied in other similar stud-
ies (Chen et al., 2016; Tian et al., 2018). First announced as
SYRS by Potopová et al. (2015), the full procedure of the fol-
lowing methodology is described by Lobell and Asner (2003)

and Lobell et al. (2011). In Fig. S1 (Supplement) an example
of the positive trend (more evident in the provincial data due
to the length of available data) and the temporal evolution of
SYRS is illustrated for both type of crops and spatial scale.

2.2 Climate data

We used a weekly gridded dataset of meteorological vari-
ables (precipitation, maximum and minimum temperature,
relative humidity, and sunshine duration) at 1.1 km resolution
for peninsular Spain and the Balearic Islands for the period
1962–2015. The grids were generated from a daily meteo-
rological dataset provided by the Spanish National Meteo-
rological Agency (AEMET), following quality control and
homogenization of the data. Further details on the method
and the gridding procedure are provided by Vicente-Serrano
et al. (2017). Reference evapotranspiration (ETo) was calcu-
lated using the FAO-56 Penman–Monteith equation (Allen et
al., 1998). Weekly data were aggregated at the monthly scale
for calculation of the various drought indices.

2.3 Methods

2.3.1 Drought indices

Palmer drought indices

Palmer (1965) developed the Palmer Drought Severity In-
dex (PDSI). Variations of this index include the Palmer
Hydrological Drought Index (PHDI), the Palmer Moisture
Anomaly Index (Z Index), and the Palmer Modified Drought
Index (PMDI). Computation of the Palmer indices is mainly
based on estimation of the ratio between the surface mois-
ture and the atmospheric demand. Subsequent studies have
revealed that spatial comparison among regions is problem-
atic (Alley, 1984; Doesken and Garen, 1991; Heim, 2002).
In this context we followed the variation introduced by Wells
et al. (2004); this enables spatial comparison when deter-
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mining a suitable regional coefficient, developing the self-
calibrated Palmer indices. Palmer indices are also referred
to as uni-scalar indices, which can only be calculated at fixed
and unknown timescales (Guttman, 1998; Vicente-Serrano et
al., 2010); this is a limitation of these indices.

Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) was introduced
by Mckee et al. (1993) and provided a new approach to the
quantification of drought at multiple timescales. The index
is based on the conversion of precipitation series to a stan-
dard normal variable, with a mean equal to 0 and variance
equal to 1, by adjusting an incomplete gamma distribution.
The SPI is a meteorological index used worldwide and is
especially recommended by the World Meteorological Or-
ganization (WMO, 2012) for drought monitoring and early
warning.

Standardized Precipitation Evapotranspiration Index
(SPEI)

Vicente-Serrano et al. (2010) proposed the Standardized Pre-
cipitation Evapotranspiration Index (SPEI) as a drought in-
dex that takes into consideration the effect of atmospheric
evaporative demand on drought severity. It provides monthly
climate balances (precipitation minus reference evapotran-
spiration), and the values are transformed to normal standard-
ized units using a three-parameter log-logistic distribution.
Following the concept of the SPI, the SPEI enables compar-
ison of drought characteristics at various timescales among
regions, independently of their climatic conditions. The SPEI
has been widely used in drought-related studies, including to
investigate the impacts of drought on various crops world-
wide (Chen et al., 2016; Kuhnert et al., 2016; Peña-Gallardo
et al., 2018b; Potopová et al., 2016b; Vicente-Serrano et al.,
2012).

Standardized Precipitation Drought Index (SPDI)

The Standardized Precipitation Drought Index (SPDI) was
developed by Ma et al. (2014) and relies on the concept of
timescales. It is considered to be a combined version of the
PDSI and the SPEI because the SPDI accumulates the in-
ternal water balance anomalies (D) obtained in the PDSI
scheme at various timescales, and the values are later trans-
formed into z units following a standard normal distribution.
For this purpose a log-logistic distribution has been used be-
cause this has been shown to be effective at the global scale
(Vicente-Serrano et al., 2015).

The SPEI, SPI, and SPDI are referred to here as multi-
scalar indices and the Palmar drought indices as uni-scalar
indices. Thus, the multi-scalar indices were computed at
scales of 1, 12, 18, and 24 months and along with the Palmer
drought indices series were de-trended by adjusting a linear
regression model to enable accurate comparisons with de-

trended crop yield information. Following the same proce-
dure used for the yield series, the residual of each monthly
series was summed to the average value for the period.

2.3.2 Correlation between drought indices and crop
yields

The relationship between the drought indices and the SYRS
for both datasets was assessed by calculating polynomial cor-
relation coefficients (c) (Baten and Frame, 1959). We used
a second-order polynomial regression model, given the com-
mon nonlinear relationship between drought indices and crop
production (Páscoa et al., 2016; Zipper et al., 2016). Here-
after, the references made to correlations refer to results ob-
tained using the polynomial approach. The months of August
and September were excluded from the analysis because they
correspond to the post-harvest period, and we were consider-
ing only the period from sowing to harvest.

As the month of the year when the greatest correlation be-
tween the drought index and the crop yield was not known
beforehand, all 10 monthly series for each index were corre-
lated with the annual yield, and the highest correlation value
was used. In the case of the multi-scalar indices, for each
monthly series and timescale we obtained 10 correlations
(one for each of the 10 months and the 14 timescales con-
sidered in the analysis). Thus, 140 correlations were obtained
for each crop and spatial unit considered in the analysis (only
correlations significant at p < 0.05 were considered). In ad-
dition, we used the timescale (in the case of multi-scalar
drought indices) and the month in which the strongest cor-
relation was found.

A t test was performed to assess the significance of the
differences in the polynomial regression correlation coeffi-
cients obtained from the drought–yield relationships, to de-
termine whether there were significant similarities or differ-
ences among the indices.

2.4 Identification of spatial patterns for crop yield
response to drought

A principal component analysis (PCA) was performed to
identify general patterns in the effect of drought on crop
yields, in relation to seasonality of the effects. PCA is a math-
ematical technique that enables the dimensionality of a large
range of variables to be reduced, by fitting linear combina-
tions of variables. We conducted a T-mode analysis, and used
the varimax method to rotate the components to obtain more
spatially robust patterns (Richman, 1986). The monthly se-
ries of the monthly maximum correlation values found from
the yield–drought relationship were the variables (one data
point per month), and the provinces and agricultural districts
were the cases. We selected two principal components (PCs)
that in combination explained > 60 % of the variance (indi-
vidually the other components explained < 5 % of the vari-
ance) and aggregated each province or agricultural district
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Figure 3. Box plots showing the strongest correlation coefficients
found between drought indices and wheat and barley yields at the
agricultural district (a and b) and provincial (c and d) scales, for
all districts and provinces analyzed. The solid black line shows the
median, the white asterisk shows the mean, and the dashed red lines
show the p < 0.05 significance level.

according to the maximum loading rule (i.e., assigning each
spatial unit to the PC for which the highest loading value was
found). The loadings were expressed in the original correla-
tion magnitudes using the matrix of component weights.

3 Results

3.1 Relationship of drought indices to crop yields

Figure 3 shows the strongest correlation found between the
crop yield for each dataset and the monthly drought in-
dices. The correlations differed substantially between the two
groups of indices. Independently of the crop type, month of
the year, or the drought timescale considered, the correlation
coefficients for the multi-scalar indices were much higher
than those for the uni-scalar indices. In both cases weaker
correlations were found for the wheat crops compared with
the barley crops. The PDSI, PHDI, and PMDI correlations
were nonsignificant (p < 0.05), but the correlations for the Z

Index and the multi-scalar indices were significant for most
provinces and agricultural districts. The correlation values
for the three multi-scalar drought indices were similar. At
district scale the average values were c = 0.57 and c = 0.6
for wheat and barley, respectively, and c = 0.41 and c = 0.48
at the provincial scale. Thus, the datasets showed a stronger
correlation for the drought indices at district scale than at the

provincial scale. In addition, more variability was found in
the provincial data than in the regional data, associated with
the length of the available records.

The spatial distribution of the maximum correlation coef-
ficients between the drought indices and the crop yields is
shown in Figs. 4 and 5, for the province and district scales,
respectively. The wheat and barley yield–drought correla-
tions showed a similar spatial pattern among indices at the
province scale. Stronger correlations (c ≥ 0.7) were found
for the SPEI and SPI for the provinces of Castilla y León
(Valladolid, Zamora, Segovia, and Soria), Aragón (Zaragoza
and Teruel), Castilla La Mancha (Guadalajara, Albacete, and
Toledo), and Valencia (particularly the cereal agricultural
districts). The weakest correlations were found for the south-
ern (Andalusian) provinces. For the Palmer drought indices,
the PMDI and Z Index showed similar spatial patterns to the
multi-scalar indices (especially in the central and northern
provinces), but the correlations were weaker (c = 0.25–0.6).
For most provinces the weakest correlations were found for
the PDSI and PHDI (c = 0.1–0.25) for both crops, with no
clear spatial difference in the correlations.

The spatial distribution of correlations between wheat
yields and the drought indices at the agricultural district scale
showed clearer patterns than those for the province level.
Thus, the response of drought indices at district scale is sim-
ilar to the response observed at provincial scale, showing
stronger correlations for the multi-scalar indices and weaker
correlations for the Palmer indices, especially the PDSI and
PHDI. The distribution of correlations among the multi-
scalar indices was very similar. The most correlated agricul-
tural districts (c ≥ 0.8) were in Castilla y León, especially
Valladolid, Segovia, north of Ávila, and northeast of Sala-
manca. Similar correlations were found for areas of north-
east Spain. There was a gradient in correlations from north
to south, with the exception of some districts in northwestern
Málaga, where wheat is extensively cultivated. In addition,
in some districts of Galicia, where expansion of the planted
wheat area has not been large, there was a strong relation-
ship between drought indices and crop yields. The results
for barley suggest a similar spatial relationship for the var-
ious drought indices. The highest coefficients were found for
the multi-scalar indices, followed by the Z Index and the
PMDI, with districts north of Cáceres, north of Galicia, and
in Guadalajara showing correlations on the order of c = 0.8,
while the correlations were weaker (c = 0.25–0.4) in districts
in the south of Córdoba and Jaén.

3.2 Relationship of drought indices to crop yields:
temporal responses

Table 1 summarizes the timescales at which the strongest
correlations were found for each of the three multi-scalar in-
dices. Strongest correlations were found for short timescales
(1–3 months) for both datasets and both crops, in gen-
eral with little difference between the indices. For wheat,
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Figure 4. Spatial distribution of the highest correlation coefficients between the drought indices and the wheat (a) and barley (b) yields at
the provincial scale, independently of the timescale.

for 52.6 % of the agricultural districts the yield was most
strongly correlated with all three drought indices at a
timescale of 1–3 months; this was also the case for 49.6 % of
provinces. In agricultural districts where wheat is cultivated
the strongest correlations were predominantly at the 1-month
scale (20.37 %), especially for the SPDI, while for most of
the provinces this occurred at the 3-month scale, particularly
for the SPEI and SPI (23.26 %). For barley, 57.4 % of the dis-
tricts and 58.7 % of provinces where this crop was grown, the
strongest correlations were predominantly at 1- to 3-month
timescales. Among the various indices for districts, the SPI
showed the strongest correlation at the 1-month scale, while
for provinces the SPEI showed the strongest correlation at
the 3-month scale (33.33 %).

The multi-scalar drought indices showed similar results.
Among these, the SPEI was the index most strongly corre-
lated with yield in the highest percentage of provinces and
districts (Table 2). For wheat crops the SPEI was the most
strongly correlated index with yield in ∼ 37 % of the agri-
cultural districts and ∼ 58 % of the provinces; these correla-
tions were found predominantly at the 3-month timescale.
For this crop the SPDI was most strongly correlated with

yield in a similar proportion of districts (∼ 33 %), primarily
at the 1-month scale, but only ∼ 14 % at the province scale.
In general, most of the maximum correlations corresponded
to short timescales.

Figure 6 shows the spatial distribution of the most strongly
correlated drought indices. For most of the provinces the
SPEI was the index most strongly correlated with crop yield.
For the agricultural districts there was substantial spatial
variability and, along with the provincial results, no well-
defined spatial pattern that distinguished specific areas for
which one index was most effective at monitoring drought.
For barley the SPDI showed the best correlation with yield
among districts (∼ 44 %), while in provinces the SPEI was
best correlated (∼ 69 %). No clear spatial patterns were ev-
ident. The similarities in the magnitude of the correlations
between multi-scalar drought indices and crop yields were
statistically significant. A t test (Fig. S2) was used to deter-
mine whether there were significant differences in the mag-
nitude of correlations obtained using the various multi-scalar
drought indices. This showed significant differences between
the SPEI and the SPDI in ∼ 30 % of agricultural districts
where wheat was grown; these were districts that showed
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Figure 5. Spatial distribution of the highest correlation coefficients between the drought indices and the wheat (a) and barley (b) yields at
the agricultural district scale, independently of the timescale.

a weaker correlation of yield with drought indices. The re-
sults suggest that, for districts with strong correlations be-
tween drought indices and crop yields, the two indexes were
equally useful. A lower proportion of districts where barley is
planted showed that statistical differences among indices ex-
ist. In contrast, for provinces no significant differences were
found. Overall, this suggests the appropriateness of using any
of these multi-scalar indices indistinctly.

3.3 Spatial patterns of drought index correlations at
the monthly scale

Regionalization of the crop yield response to drought based
on monthly correlations with the drought indices was under-
taken in relation to the most correlated drought index in each
region, independently of the month in which this maximum
correlation occurred. Thus, in this analysis the results ob-
tained using the various multi-scalar drought indices were

merged. General spatial patterns in the effect of drought con-
ditions on yield were identified using a T-mode PCA. Fig-
ures 7 and 8 show the results for the provincial and regional
datasets, respectively. We selected two components that ex-
plained more than the 60 % of the variance in each case.
This classification reinforced the north–south pattern of cor-
relations previously found for both datasets. Figure 9 shows
the timescales for which the maximum monthly correlations
were found for the provinces and agricultural districts for
each of the defined components, using a maximum loading
rule.

3.3.1 Wheat

Agricultural district scale

At the district scale the PCA for wheat (Fig. 7a) showed more
defined spatial patterns than the PCA did at the provincial
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Table 1. Percentage of analyzed agricultural districts (a) and provinces (b) where wheat and barley are cultivated, for which the maximum
correlations per timescale were found using the multi-scalar indices.

Timescale 1 2 3 4 5 6 7 8 9 10 11 12 18 24

(a) Agricultural district data

Wheat SPI 18.38 15.38 13.68 9.83 4.27 7.26 2.56 5.13 1.28 3.42 6.41 2.14 5.98 4.27
SPEI 16.67 14.96 17.09 9.83 6.41 3.42 5.13 4.7 3.42 2.56 3.85 4.27 5.13 2.56
SPDI 26.07 21.79 13.68 5.13 3.42 2.99 2.56 2.56 2.14 5.13 1.71 3.85 3.42 5.56

Averaged % 20.37 17.38 14.82 8.26 4.70 4.56 3.42 4.13 2.28 3.70 3.99 3.42 4.84 4.13

Barley SPI 29.63 14.81 14.81 12.96 0 3.7 3.7 1.85 3.7 1.85 1.85 3.7 3.7 3.7
SPEI 24.07 12.96 22.22 9.26 1.85 3.7 5.56 3.7 3.7 1.85 0 5.56 1.85
SPDI 24.07 14.81 14.81 7.41 7.41 3.7 11.11 1.85 0 3.7 0 0 3.7 7.41

Averaged % 25.92 14.19 17.28 9.88 3.09 3.70 6.79 2.47 2.47 2.47 0.62 3.09 3.08 4.94

(b) Provincial data

Wheat SPI 6.98 13.95 23.26 6.98 2.33 6.98 6.98 6.98 6.98 2.33 4.65 4.65 4.65 2.33
SPEI 9.3 11.63 23.26 11.63 9.3 0 6.98 6.98 2.33 2.33 4.65 4.65 4.65 2.33
SPDI 13.95 32.56 13.95 2.33 2.33 4.65 4.65 6.98 0 2.33 6.98 2.33 0 6.98

Averaged % 10.08 19.38 20.16 6.98 4.65 3.88 6.20 6.98 3.10 2.33 5.43 3.88 3.10 3.88

Barley SPI 7.14 19.05 30.95 9.52 4.76 7.14 0 2.38 2.38 0 0 11.9 0 4.76
SPEI 11.9 11.9 33.33 7.14 4.76 4.76 7.14 4.76 7.14 0 0 2.38 2.38 2.38
SPDI 9.52 38.1 14.29 4.76 4.76 7.14 0 0 7.14 0 2.38 4.76 2.38 4.76

Averaged % 9.52 23.02 26.19 7.14 4.76 6.35 2.38 2.38 5.55 0.00 0.79 6.35 1.59 3.97

Table 2. Percentage of analyzed agricultural districts and provinces where wheat and barley are cultivated, for which the maximum cor-
relations with the multi-scalar indices were found. Information in parentheses shows the timescale at which the provinces and agricultural
districts correlate most and the percentage of the provinces and district.

SPEI SPDI SPI

Agricultural Wheat 36.75 (3, 7.26) 33.33 (1, 7.69) 29.91 (2, 4.70)
districts Barley 35.19 (3, 11.11) 44.44 (1, 12.96) 20.37 (1, 11.11)

Provinces Wheat 58.14 (3, 18.60) 13.95 (24, 4.65) 27.9 (3, 4.65)
Barley 69.04 (3, 16.66) 9.52 (1, 7.14) 21.42 (5,24, 4.76)

scale. The first component (PC1) explained 43.36 % of the
variance and was characterized by stronger correlations (c =
0.7–0.9) in districts mainly located on the north and cen-
tral plateau; these were stronger than those recorded for the
same locations at the provincial scale. Weaker correlations
(c = 0.15–0.5) were dispersed, although these were found
predominantly in the south and northwest. The scores for
PC1 showed particular sensitivity to drought during spring,
although strong correlations were also found during autumn.
The second component (PC2) explained 18.63 % of the vari-
ance, and the loading coefficients also showed a clear spa-
tial pattern, with the agricultural districts north of Sevilla
and east of Castilla La Mancha having the highest values.
The weakest correlations were found for the districts of An-
dalucía, Extremadura, and Aragón. Lower scores in PC2
characterized the interannual response to drought relative to

PC1. These districts in PC2 also showed a stronger response
during spring but not autumn, as was found for PC1. The
distribution of PCs according to the maximum loading rule
enabled identification of a north–south component in the sen-
sitivity of wheat yields to the drought index. The timescales
at which wheat yields in agricultural districts responded most
during spring varied from shorter timescales (3 months) in
districts in PC1 to longer timescales (5 to 6 months) for those
in PC2 (Fig. 9e, f), which also showed greater variability in
most months relative to districts from PC1. Greater variabil-
ity for wheat at the district scale was observed relative to that
at the provincial scale. Due to the major number of obser-
vations considered, the response to drought in Spain when
considering district scale shows more heterogeneity than at
provincial scale.
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Figure 6. Spatial distribution of the drought indices with the strongest correlations with wheat (a, c) and barley (b, d) at the province
(c, d) and agricultural district (a, b) scales.

Provincial scale

The results for wheat at the provincial scale (Fig. 7b) showed
that the first (PC1) and second (PC2) components explained
51.7 % and 20.8 % of the variance, respectively. The loadings
of the first component were higher for the central plateau and
the east of Spain. These represent provinces in the Castilla y
León and Castilla y La Mancha districts and the provinces
of Castellón, Valencia, Alicante, Cantabria, and Huelva, and
Sevilla and Almería in Andalucía. In these provinces there
was a strong correlation between drought indices and crop
yields, especially during spring, with particularly strong cor-
relations in May. In contrast, during winter the correlations
were weaker, especially in February. PC2 showed greater
spatial heterogeneity, with strong correlations in the east
(Zaragoza and Tarragona provinces) and south (Cádiz, Cór-
doba, Málaga, Granada, and Jaén provinces) of Spain. For
this component the temporal response to drought was not as
strong as that for PC1, but the maximum correlation was also
found during May. The distribution of the maximum loadings
showed a dispersed pattern, with PC1 grouping provinces in
the central plateau and east of Spain and PC2 grouping those
in southern and some northeastern provinces. The averaged
temporal response to drought during spring is set at medium
timescales (4–7 months). In particular, in May most of the

provinces correlated at 5 months (Fig. 9a, b), indicating the
importance of climatic conditions during winter and spring to
the crop yields obtained. This was also evident for the longer
timescales at which most of the provinces correlated during
the winter months (11–18 months). It is noteworthy that there
was great variability in the temporal response of provinces in
PC1 in October, February, March, and April.

3.3.2 Barley

Agricultural district scale

For barley crops (Fig. 8a) both components showed strong
correlations (c = 0.6–0.9) in most of the agricultural dis-
tricts. In general, the districts showing the strongest corre-
lations in PC1 and PC2 were those located in Castilla La
Mancha and north of Cáceres and Córdoba. Scores for PC1
for barley crops were similar to those for PC1 for wheat dur-
ing spring and autumn, but the results for PC2 suggest that
there was little interannual sensitivity to drought. Most of
the correlations for spring indicate that barley responded to
drought conditions at the 3–4-month scale, mainly in those
districts associated with PC1. Barley yields in districts asso-
ciated with PC2 were more affected by drought conditions in
May at 7–9-month timescales (Fig. 9g, h).
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Figure 7. PC loadings, PC scores, timescales, and maximum loading rules from the PCA for monthly maximum correlation coefficients
between the SPEI and wheat yields at the agricultural district (a) and provincial (b) scales, independently of the timescale. The PC loadings
and maximum loadings were significant at p < 0.05.
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Figure 8. PC loadings, PC scores, timescales, and maximum loading rules from the PCA for monthly maximum correlation coefficients be-
tween the SPEI and barley yields at the agricultural district scale (a) and the SPDI and barley yields at the provincial scale (b), independently
of the timescale. The PC loadings and maximum loadings were significant at p < 0.05.
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Figure 9. Box plots showing the timescale at which significant monthly correlations were found in the provinces (a–d) and agricultural
districts (e–h) for wheat and barley for each of the components defined in the PCA.

Provincial scale

For barley at the provincial scale (Fig. 8b) we found more
variability in the magnitude of correlations. For PC1 (ex-
plaining 43.22 % of the variance) strong correlations (r =
0.7–0.9) were found for the north and central provinces of
Castilla y León, the central provinces of Castilla y la Mancha,
and Madrid, Teruel, Valencia, and Castellón. The provinces
associated with PC2 (explaining 27.91 % of the variance)
were more dispersed than those in PC1, and those show-
ing strong correlations included Zaragoza and Guadalajara

in the north, Barcelona and Balearic Islands in the north-
east and east, Cáceres in the west, and Cádiz, Córdoba,
Málaga, Granada, and Jaén in the south. Provinces show-
ing weaker correlations in PC1 were spread in the north-
east (e.g., Navarra, Zaragoza, and Lleida) and west of Spain
(e.g., Cáceres and Badajoz). Component scores for PC1 were
higher than for PC2, although for wheat crops both showed
maximum scores during spring (March) and minimum scores
in autumn and winter. More provinces in May were corre-
lated with drought indices at medium drought timescales (4–
8 months). During spring, provinces in PC1 showed corre-
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lations at longer timescales (7–8 months), while provinces
in PC2 showed responses at shorter timescales (3–4 months)
(Fig. 9c, d).

3.3.3 General climatological characteristics for the
PCA components

Figures S3–S12 show the distribution of climatic characteris-
tics including precipitation, atmospheric evaporative demand
(AED), maximum and minimum temperature, and the hy-
droclimatic balance (precipitation minus AED) at the district
scale for the two PCA components. For those districts where
wheat was cultivated, no major differences in AED values
were found among the components. However, minor differ-
ences were observed in precipitation among districts belong-
ing to different PCA components. Those in PC2 had on av-
erage less precipitation than those in PC1, especially during
autumn, but the difference was not substantial. Greater dif-
ferences were observed for temperature, with PC1 mainly
characterized by districts that had higher maximum temper-
atures in autumn and spring, and with higher minimum tem-
peratures than the districts in PC2. These results highlight
the important role of temperature in the different responses
of crop yield to drought and demonstrate that, contrary to
what may have been expected, temperature and not precip-
itation was the main factor constraining crop growth. Thus,
changes in extreme temperature levels may influence future
crop yields. Districts in PC2 where the barley yield corre-
lated with drought indices were characterized by lower levels
of precipitation and higher maximum and minimum temper-
atures than districts represented by PC1 and by higher AED,
especially from April to July. Extremes of temperature also
seemed to be the major factor determining barley crop yield.

4 Discussion

In this study we investigated the impacts of drought on two
rainfed crops in Spain, as measured by a variety of drought
indices. We used two datasets of annual crop yields, one from
agricultural statistics at the provincial scale spanning the pe-
riod 1962–2013 and the other a new database at the agricul-
tural district scale from the available parcel data from the
national survey covering the period 1993–2015. To identify
the best indicator of the impact of drought on yields and their
sensitivity to climate, we evaluated the performance of seven
drought indices. The selection of drought indices was based
on those commonly used to monitoring droughts worldwide,
including the Standardized Precipitation Evapotranspiration
Index (SPEI), the Standardized Precipitation Index (SPI), the
Palmer drought indices (PDSI, Z Index, PHDI, and PMDI),
and the Standardized Palmer Drought Index (SPDI).

Independently of the type of crop and the temporal scale
considered, our results showed that drought indices calcu-
lated at different timescales (the SPEI, the SPI, and the SPDI)

had greater capacity to reflect the impacts of climate on crop
yields, relative to uni-scalar drought indices. The better per-
formance of these multi-scalar drought indices was mainly
because of their flexibility in reflecting the negative impacts
of drought over a range of regions with very different char-
acteristics (Vicente-Serrano et al., 2011). This issue is espe-
cially relevant in agriculture, as vegetation components do
not respond equally to water deficit. The sensitivity and vul-
nerability of each type of crop to drought and the character-
istics of the specific region influence the variability evident
in the response to droughts (Contreras and Hunink, 2015).
Nonetheless, the results of the assessment of the performance
of the Palmer drought indices demonstrated that correlations
varied markedly among them, showing some exceptions that
may affect their usefulness for monitoring purposes. Overall,
our results showed that the PHDI had the weakest relation-
ship to crop yields, followed by the PDSI and the PMDI. The
better performance of the PDSI over the PHDI was expected,
as the latter was primarily developed for hydrological pur-
poses. Likewise, our results confirmed a better performance
of the PMDI (a modified version of the PDSI) over the origi-
nal PDSI for both crops. Our results are consistent with those
of previous studies assessing agricultural drought impacts on
crop yields at the global (Vicente-Serrano et al., 2012) and
regional (Peña-Gallardo et al., 2018b) scales. The Z Index
was the best uni-scalar index among the set analyzed in our
study. This index measures short-term moisture conditions,
which is a major factor in crop stress (Quiring and Papakryi-
akou, 2003). Thus, the Z Index was more closely correlated
with crop yield than any of the other Palmer indices, indi-
cating its usefulness relative to other Palmer drought indices
(Karl, 1986).

Although our findings point to poorer performance of the
Palmer drought indices relative to the multi-scalar drought
indices, they remain among the most widely accepted in-
dices. Numerous studies have used the Palmer indices in as-
sessments of the use of drought indices for monitoring agri-
cultural drought in various regions worldwide and have re-
ported the superiority of the Z Index (Mavromatis, 2007;
Quiring and Papakryiakou, 2003; Sun et al., 2012; Tu-
nalıoğlu and Durdu, 2012; our results confirm its usefulness
among the Palmer drought indices.

Nevertheless, it is important to stress that the usefulness of
Palmer drought indices is less than drought indices that can
be computed at different timescales (Vicente-Serrano et al.,
2012). We demonstrated that the three multi-scalar drought
indices in our study (SPEI, SPI, and SPDI) were able to de-
tect drought at different timescales, enabling past weather
conditions to be related to present conditions in regions char-
acterized by diverse climatic conditions. This is consistent
with previous comparative studies in various regions that re-
ported multi-scalar drought indices were effective for mon-
itoring drought impacts on agricultural lands (Blanc, 2012;
Kim et al., 2012; Potopová, 2011; Potopová et al., 2016a;
Tian et al., 2018; Zhu et al., 2016; Zipper et al., 2016). Al-
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though previous studies reported differences among some
of the above three indices (e.g., the SPDI and the SPEI;
Ghabaei Sough et al., 2018), others have reported similar-
ities in their performance in assessing agricultural drought
impacts (Labudová et al., 2016; Peña-Gallardo et al., 2018a).
The similar magnitudes of their correlations suggest a sim-
ilar ability to characterize the impact of drought on crop
yields. However, minor differences among these indices sug-
gested the SPEI performed best. First, for both crops slightly
stronger correlations were observed with the SPEI, although
the SPDI was superior in relation to barley yields at the agri-
cultural district scale. In general, the SPEI was found to be
the most suitable drought index in the majority of agricultural
districts and provinces, in accordance to Ribeiro et al. (2018)
who also found it suitable in Spain for relating drought con-
ditions and yields variability. This suggests that inclusion of
AED in the drought index calculation, as occurs in the SPEI,
provides greater capacity to predict drought impacts on crop
yields compared with the use of precipitation only. Varia-
tion in the maximum and minimum temperatures has been
found to be the major factor differentiating agricultural dis-
tricts and provinces with greater sensitivity to drought. Previ-
ous studies have stressed the risks associated with an increase
in global temperatures, particularly maximum temperatures,
and the possible effects on crop yields (Lobell and Field,
2007; Moore and Lobell, 2014). Thus, a ∼ 5.4 % reduction
in grain yields resulting from an increase in average temper-
ature is expected to occur under the current global warming
scenario (Asseng et al., 2014; Zhao et al., 2017).

The temporal and spatial effects of drought on yields seem
to be very complex, given the observed variability in Spain.
In this respect, significant yield effects of drought were found
in both datasets. Nevertheless, at the agricultural district
scale there was a more evident spatial effect of drought on
agricultural yields. This is a key finding for spatial-scale
analyses, although the lack of long time series datasets on
regional yields is a common constraint.

Drought effects on barley and wheat were similar in space
and time, although their sensitivity to drought differed, as
shown by differences in the magnitude of the correlations
with the drought indices, with wheat yields showing stronger
correlations than barley yields. This can be explained by
the different physiological characteristics of the two crops,
as barley is less dependent on water availability at germi-
nation and the grain filling stage than wheat (Mamnouie et
al., 2006). Although the transpiration coefficient for barley
is higher, this crop is not as subject as wheat to water stress
under drought conditions (Fischer et al., 1998). Our results
indicate that the temporal responses of barley and wheat to
drought conditions were very similar, despite the fact that
in Spain barley is typically cultivated later than wheat and
in soils with poor moisture retention. Therefore, the pheno-
logical characteristics of each type of crop determine how
drought affects yields. The results showed that temperature
had a more important role than precipitation, suggesting that

extreme variations in average temperature conditions during
the most sensitive growth stages may have a negative impact
on crops.

Overall, crop yields in Spain tend to respond to short
drought timescales (1–3 months). However, the sensitivity
of crops to drought is greater during spring at medium (4–
6 months) timescales. These results are in line with previ-
ous studies conducted in the Iberian Peninsula with a sim-
ilar database at provincial scale that also point to shorter
timescales, mostly during spring months (1–6 months)
(Ribeiro et al., 2018). This highlights that moisture condi-
tions during winter (the period corresponding to planting and
the first growth stages of tillering and stem elongation) are
crucial for the successful development of the plants (Çakir,
2004; Moorhead et al., 2015; Wang et al., 2016a, b).

We found a stronger response of crops to climatic con-
ditions in provinces and agricultural districts in the central
plateau and an unexpectedly weaker response in southwest-
ern districts. This reflects the inconsistencies reported for the
Iberian Peninsula by Páscoa et al. (2016), who argued that
spatial differences can be explained mainly by the differing
productivities in the various districts; we noted this for the
mainly agrarian areas of peninsular Spain (Castilla y León
and Castilla La Mancha) and the characteristically hetero-
geneity of this territory. In the southwestern agricultural ar-
eas, where the precipitation rates are lower and temperatures
higher, the correlations of yield with drought were weaker.
In addition, conclusions achieved by Gouveia et al. (2016)
in the same region supported the statement of the strong con-
trol of drought on plants activity, especially in semiarid areas.
Even though our findings from crop yields suggest the con-
trary due to the predominance of cereal croplands in north–
central regions of Spain, this can be attributed to episodes of
abnormal extreme temperatures, such as the very low tem-
peratures in early spring or warmer than usual temperatures
in winter. These would affect the expected low evapotran-
spiration rates during the cold season (Fontana et al., 2015;
Kolář et al., 2014). A recent study by Hernandez-Barrera et
al. (2016) demonstrated that during autumn and spring, pre-
cipitation deficit is the most influential climate factor affect-
ing wheat growth, while an increase in the diurnal temper-
ature range causes a reduction in wheat yield. We found no
major differences in precipitation among districts belonging
to any of the two defined components but found other differ-
ences including in the average maximum and minimum tem-
peratures. These findings highlight the complexity in choos-
ing a useful drought index that encompasses the specificities
of each crop, including its sensitivity to moisture and envi-
ronmental conditions throughout the entire growth cycle, and
its seasonality. This underscores the importance of testing
and comparing the appropriateness of different drought in-
dices to ensure accurate identification of the multi-temporal
impacts of drought on natural systems.
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5 Conclusions

The main findings of this study are summarized below.

1. Assessment of the efficacy of drought indices for mon-
itoring the effect of climate on agricultural yields
demonstrated the better performance of multi-scalar in-
dices. The ability to calculate these indices at vari-
ous timescales enabled drought impacts to be more
precisely defined than with the use of indices lacking
this characteristic. The multi-scalar drought indices as-
sessed also had fewer computational and data require-
ments (particularly the SPEI and the SPI), which is
a significant consideration when performing analyses
based on scarce climate data.

2. From a quantitative evaluation of the relationship of
drought indices to crop yields we determined that both
of the multi-scalar drought indices tested were useful for
the assessment of agricultural drought in Spain. How-
ever, the SPEI had slightly better correlations and is the
most highly recommended for the purpose.

3. The spatial definition of yield responses to drought was
clearer at the district scale, where the finer spatial res-
olution enabled better definition of the patterns of re-
sponses because the climatic variability of each region
was better captured at this scale.

4. Barley and wheat yields were more vulnerable to
drought during spring, both at short (1–3 months) and
medium (4–6 months) timescales. Moisture conditions
during late autumn and winter also had an impact on the
crop yields.

5. The strongest relationships between drought indices and
crop yields were found for the northern and central agri-
cultural districts. The relationships for the southern dis-
tricts were weaker because of the difficulty of charac-
terizing drought impacts over the diverse and complex
territory involved.

6. The climatic and agricultural conditions in Spain are
very diverse. The large spatial diversity and the com-
plexity of droughts highlight the need to establish accu-
rate and effective indices to monitor the variable evolu-
tion of drought in vulnerable agriculture areas. Climate
change is likely to lead to yield losses because of in-
creased drought stress on crops, so in this context effec-
tive monitoring tools are of utmost importance. The au-
thors consider that further analysis complementing this
study may help to unravel the climate mechanisms that
influence the spatiotemporal responses of yields to cli-
mate in Spain.
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1 

Supplementary Table 1. Relationship between provincial and agricultural district data, 
aggregated at the provincial scale, for wheat cultivation for the common period 
19932014. 

Codes Provinces r Codes Provinces r

1 Álava 0.16 23 Jaén 0.38*

2 Albacete 0.41* 24 León 0.69*

3 Alicante 0.1 25 Lleida 0.52*

4 Almería 0.47* 26 La Rioja 0.35*

5 Ávila 0.77* 28 Madrid 0.81*

6 Badajoz 0.49* 29 Málaga 0.11

7 Islas Baleares -0.22 30 Murcia 0.13

8 Barcelona 0.69* 31 Navarra -0.25

9 Burgos 0.82* 32 Ourense 0.37*

10 Cáceres 0.34* 33 Asturias -0.16

11 Cádiz 0.32* 34 Palencia 0.73*

12 Castellón -0.19 37 Salamanca 0.87*

13 Ciudad Real 0.43* 40 Segovia 0.94*

14 Córdoba 0.46* 41 Sevilla 0.25

15 A Coruña 0.1 42 Soria 0.89*

16 Cuenca 0.86* 43 Tarragona 0.54*

17 Girona 0.1 44 Teruel 0.83*

18 Granada 0.3 45 Toledo 0.48*

19 Guadalajara 0.87* 46 Valencia 0.2

21 Huelva 0.29 47 Valladolid 0.92*
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22 Huesca 0.4* 49 Zamora 0.75*

50 Zaragoza 0.51*

(*) correlations are significant at p < 0.05

Supplementary Table 2. Relationship between provincial and agricultural district data, 
aggregated at provincial scale, for barley cultivation for the common period 19932014. 

Code
s Provinces r

1 Álava 0.11

2 Albacete 0.2

10 Cáceres 0.48*

11 Cádiz 0.32*

12 Castellón -0.14

13 Ciudad
Real 0.28

14 Córdoba 0.54*

15 A Coruña -0.09

16 Cuenca 0.88*

17 Girona 0.08

18 Granada 0.51*

19 Guadalajar
a 0.86*

22 Huelva 0.57*

26 La Rioja 0.76*

31 Navarra 0.01

41 Sevilla -
0.35*

43 Tarragona 0.88*

(*) correlations are significant at p < 0.05
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Supplementary Fig. 1. Example of temporal trends of provincial and agricultural district
yields of wheat (a, d) and barley (b, e) in the province of Cáceres and the district
Navalmoral de la Mata (Cáceres) and the temporal evolution of the SYRS at both scales
(c, f) for the available period of time in each case. Red line represents the fitting of a
quadratic function. Dashed black line represents the threshold 0-value.
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Supplementary Fig. 2. Spatial distribution of regions where significant differences (dark 
grey) and non significant differences (light grey) were found in the t-tests. 

Supplementary Fig. 3. Monthly mean AED conditions in the agricultural districts where 
wheat was cultivated, classified into principal components (C1 and C2) for the period 
19932015. The red dot shows the mean, and the black line shows the median. 
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Supplementary Fig. 4. As for Supplementary Fig. 3, but for the monthly mean 
precipitation. 
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Supplementary Fig. 5. As for Supplementary Fig. 3, but for the monthly mean maximum 
temperature. 
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Supplementary Fig. 6. As for Supplementary Fig. 3, but for the monthly mean minimum 
temperature. 
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Supplementary Fig. 7. As for Supplementary Fig. 3, but for the monthly mean 
hydroclimate balance. 
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Supplementary Fig. 8. Monthly mean AED conditions in the agricultural districts where 
barley was cultivated, classified into principal components (C1 and C2) for the period 
19932015. The red dot show the mean, and black line shows the median. 
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Supplementary Fig. 9. As for Supplementary Fig. 8, but for the monthly mean 
precipitation. 
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Supplementary Fig. 10. As for Supplementary Fig. 8, but for the monthly mean maximum 
temperature. 
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Supplementary Fig. 11. As for Supplementary Fig. 8, but for the monthly mean minimum 
temperature. 
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Supplementary Fig. 12. As for Supplementary Fig. 8, but for the monthly mean 
hydroclimate balance. 
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