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Summary

We present the results of validation of the European reanalysis datasets ERA5, UERRA MESCAN-
SURFEX, COSMO_REAG6 against the observation-based data available from the Horizon 2020
EUSTACE Project, with respect to daily minimum, maximum and average air temperature, for the period
1995-2017. Furthermore, we investigate the changes in the regime of 4 extreme temperature indices
relevant for agro-meteorological studies, from the list of indices adopted in INDECIS project.

Methodology

The European reanalysis datasets ERA5, UERRA MESCAN-SURFEX, COSMO_REAG6
have been validated against the homogenized temperature series obtained in the Horizon 2020
EUSTACE Project, with respect to daily minimum, maximum and average air temperature. The
UERRA MESCAN-SURFEX dataset is available from Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/). Although the UERRA-HARMONIE/V1 dataset was selected
for the intercomparison exercise and described in D6.1, in this study the MESCAN- SURFEX
dataset was used as it presents the finest spatial resolution for near-surface air temperature
among the UERRA reanalysis datasets.

The study employed data from 2163 stations (Fig.1), covering the period 1995-2017,
which represents the common period for the three datasets. The comparison made use of
common accuracy indicators (ME, MAE, RMSE, Pearson correlation coefficient), seasonal
scatterplots and Taylor diagrams. The analysis was performed using the INDECIS software for
intercomparison of reanalysis datasets (interdecis) (https://github.com/alexdum/interdecis)
developed in WP6.
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Fig. 1 Spatial distribution of the stations used in the study.

For the investigation of the changes in the regime of extreme temperature indices for the
analyzed area (Europe), we used a core set of 4 indices as defined in Table 1. The indices have
been computed using R-dedicated packages, starting from daily and hourly results of the
reanalysis data (COSMO, UERRA) and observations data (E-OBS) for the interval 1955 — 2017.

Meteorological variables used as input for computing the extreme indices are daily mean,
maximum and minimum values of 2m air temperature.

The statistical analyzes performed for the four climate indices aim at a comparative
approach regarding the three data sets.

Table 1. The definition of indices.

Indices Indices Name
D32 Number of consecutive days with maximum temperature >32°C from June to August
Sums of positive average temperatures calculated for the 1% of February to the 10" April
PTG :
interval
STN15 Sums of minimum air temperatures <-15°C recorded in December-February interval
STX32 Sums of maximum temperatures >32°C in JJA




Results

Intercomparison in terms of variables

The ERA5S and COSMO-REAG datasets have a very similar behavior with regard to the
reference data, while UERRA MESCAN-SURFEX presents the best accuracy scores, for all
variables and all seasons as shown also by the scatter plots (Fig. 2-4), possibly due to the
improved representation of physical processes in the SURFEX land surface platform (Masson et
al, 2013).
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Fig. 2 Observed daily minimum air temperature vs. modelled daily minimum air temperature.
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Fig. 2 Observed daily average air temperature vs. daily average modelled minimum air temperature.
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Fig. 3 Observed daily maximum air temperature vs. modelled daily maximum air temperature.



The results of the intercomparison between the three datasets and the reference data for
the 2m air temperature show a high correlation (above 0.85) between each reanalysis dataset and
the reference data, for each variable and season, averaged over the entire European area (Fig. 5).
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Fig. 5 Taylor diagram of the pairwise observed and reanalysis for (a) daily minimum air temperature, (b)
daily average air temperature and (c) daily maximum air temperature.



Intercomparison in terms of indices

The comparative analysis of the spatial distributions representing the temporal average
calculated in each grid (1955-2017) for the three data sets studied reveals, for each index, a
similar pattern produced by each dataset.

For indices D32 and STX32, the highest mean values are found in the southern Mediterranean
area, gradually decreasing towards the north of the European continent. For these indices, both
reanalysis datasets are slightly colder than the observations (Fig 6 and 8) and they are closely
correlated (Fig. 7 and 9), the spatial correlation with the reference data suddenly decreasing after
2005.
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Fig. 6 Spatial distribution of mean values for D32 index from COSMO-REAN6, UERRA-MESCAN
SURFEX and E-OBS datasets for the period 1995-2017.
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Fig. 7 Spatial correlation coefficient for D32 index between COSMO-REANG6, UERRA-MESCAN SURFEX
and E-OBS datasets for the period 1995-2017.
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Fig. 8 Spatial distribution of mean values for STX32 index from COSMO-REAN6, UERRA-MESCAN
SURFEX and E-OBS datasets for the period 1995-2017.




Correlation coefficient

Correlation COSMO/E-OBS Correlation COSMO/UERRA e==Correlation UERRA/E-OBS

Fig. 9 Spatial correlation coefficient for STX32 index between COSMO-REAN6, UERRA-MESCAN
SURFEX and E-OBS datasets for the period 1995-2017.

In the case of the PTG index, the spatial distribution looks like a dipole (NE / SV) with
higher values in southwestern Europe and lower values in northeastern Europe (Fig.10). A better
agreement in terms of spatial distribution is found between COSMO-REANG and the reference
dataset, while the spatial correlation is high for both reanalysis data (Fig.11).
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Fig. 10. Spatial distribution of mean values for PTG index from COSMO-REAN6, UERRA-MESCAN
SURFEX and E-OBS datasets for the period 1995-2017.
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Fig. 11 Spatial correlation coefficient for PTG index between COSMO-REAN6, UERRA-MESCAN
SURFEX and E-OBS datasets for the period 1995-2017.




The STN15 index shows the highest values of the average in the north of Europe
gradually increasing towards the northeast of Europe (Fig.12). For both reanalysis the spatial
distribution of STN15 mean values show a good agreement with the reference dataset, but in
terms of spatial correlation, UERRA MESCAN SURFEX is closer to the E-OBS data (Fig. 13).
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Fig. 12. Spatial distribution of mean values for STN15 index from COSMO-REAN6, UERRA-MESCAN
SURFEX and E-OBS datasets for the period 1995-2017
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Fig. 11 Spatial correlation coefficient for STN15 index between COSMO-REAN6, UERRA-MESCAN
SURFEX and E-OBS datasets for the period 1995-2017.



Conclusions

o Reanalysis datasets are good candidates as alternative data sources with respect to
parameters analyzed, at European level.

o In particular, the UERRA MESCAN-SURFEX dataset presents, overall, the best
performance for both atmospheric variables and climate indices considered.

o For indices: correlation between the reanalysis datasets and observations is high; for D32
and STX32, the correlation higher in the first part of the interval, while after 2005 it decreases
significantly.

o The COSMO-REAG reanalysis set correlates better with the observation data for the D32,
STX32 and PTG indices.

o In the case of the STN15 climate index, the set of UERRA reanalysis is better correlated
with the observational data, more pronounced in the last years of the interval.
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